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Folding of the triangular lattice with quenched random bending rigidity

P. Di Francesco, E. Guitter, and S. Mori*

Service de Physique The´orique, C.E.A. Saclay, F-91191 Gif-sur-Yvette Cedex, France
~Received 19 July 1996!

We study the problem of folding of the regular triangular lattice in the presence of a quenched random
bending rigidity6K and a magnetic fieldh ~conjugate to the local normal vectors to the triangles!. The
randomness in the bending energy can be understood as arising from a prior marking of the lattice with
quenched creases on which folds are favored. We consider three types of quenched randomness:~i! a ‘‘physi-
cal’’ randomness where the creases arise from some prior random folding;~ii ! a Mattis-like randomness where
creases are domain walls of some quenched spin system;~iii ! an Edwards-Anderson-like randomness where the
bending energy is6K at random, independently on each bond. The corresponding (K,h) phase diagrams are
determined in the hexagon approximation of the cluster variation method. Depending on the type of random-
ness, the system shows essentially different behaviors.@S1063-651X~97!08001-X#

PACS number~s!: 05.50.1q, 64.60.2i, 82.65.Dp
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I. INTRODUCTION

The statistical properties of polymerized membranes
tethered surfaces, have been widely discussed in the pas
years @1–3#. A polymerized membrane is the two
dimensional generalization of a linear polymer@1–4#. Its en-
ergy involves both an in-plane elastic~strain! contribution
and an out-of-plane~bending! one. At low temperature, suc
a membrane with bending rigidity is asymptotically flat a
its radius of gyrationRG increases as the linear internal d
mensionL of the surface@5–10#. As a function of tempera-
ture, the membrane without self-avoiding interaction~phan-
tom membrane! undergoes a crumpling transition from th
low-temperature flat phase to a high-temperature crump
phase (RG;Aln L) @11,12#. The mechanism of the transition
in particular the stability of the flat phase, is rather subtle a
relies on the coupling between in-plane and out-of-plane
formation modes@5#.

Very generally, two-dimensional~2D! membranes can b
discretized into triangulations, whose faces are endow
with natural Heisenberg spin variables, representing the
rection of the local normal vector to the surface@1#. Poly-
merized membranes, which have a fixed connectivity, t
translate into statistical spin systems on theregular triangu-
lar lattice. The corresponding spin system is, however,
volved because the resulting spins are not independent
ables. The constraint of being normal vectors to a surf
causes a long-range interaction between the spins, which
bilizes the ordered flat phase, as opposed to the case o
usual two-dimensional unconstrained Heisenberg model
ways disordered@1,5#.

The above mechanism clearly indicates the subtlety of
correspondence between geometrical objects and spin
tems, especially in two dimensions. In order to underst
this, several simple models have been proposed. The
plest one is probably a square lattice model introduced
David and Guitter@7#. The model is a discrete rigid bon
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square lattice, which is allowed to fold onto itself along
bonds in a two-dimensional embedding space. The constr
there makes the folds propagate along straight lines. In
presence of bending rigidity, the system is always flat.

A triangular lattice version of this 2D folding model wa
then introduced by Kantor and Jaric´ @13#. Describing the~up
or down! normal to each triangle by a spin variables561,
the model Hamiltonian translates into that of the Ising mo
with, however, constraints on the spin variables. This res
in several new features, and a totally new phase diagram
compared with the usual Ising model@13–16#. Finally, the
folding of the triangular lattice embedded in a thre
dimensional discrete space has been formulated as a
vertex model@17,18#.

Constraints do not appear only in the physical degree
freedom, like local normal vectors. If the membrane has d
order, the disorder itself can also be constrained in so
cases. For example, if one folds a piece of paper and ma
a crease, this will generate a spontaneous curvature alon
crease. If one now crumples the paper randomly by h
@4,19#, the generated spontaneous curvature will be dire
related to the configuration of the normal vectors of the
sulting crumpled configuration. For the latter to be accep
as a physical configuration, the normal vectors should a
obey some constraints. The induced disorder~in this case the
induced random spontaneous curvature! should thus obey
similar ‘‘physical’’ constraints.

Here we study a simple model of folding with such
‘‘physical’’ quenched randomness. As a model, we use
triangular lattice folded in two dimensions, with a quench
random bending rigidity arising from a first random prefol
ing process. As our main result, we find a transition to
low-temperature frozen phase where the lattice is prefe
tially trapped into the original random prefolded state.
order to clarify the importance of the ‘‘physical’’ constrain
on the disorder, we then study two other types of disor
distributions where the random bending rigidity cannot,
general, be realized by any particular random prefolding p
cess. In such a case, a frustration is created in the sense
the bending energy cannot be trivially minimized by a
folded state of the lattice. In the absence of any other ex
ce,
.

237 © 1997 The American Physical Society



rs
ic
th
o
m
te
er

tr
lu
na
r
y
ze
ul
th
u
s
m
h
a

e
e

b
-

t
te

t o
ay
to
e
e

nl
th
-
er
fin
o
rt
ed
ig
or
-
e
ar

er
pin
les,
s
the
or-
are
de-

se
er
ed

3.

en-

g-

e,

ted
n-
e
will

In
are

re

238 55P. Di FRANCESCO, E. GUITTER, AND S. MORI
nal field, we find that the system is unable to develop
frozen phase in this case.

The paper is organized as follows. In Sec. II, we fi
discuss the general folding problem of the triangular latt
and recall some known facts about it. We then describe
precise type of ‘‘physical’’ randomness that we consider
the lattice and which we write as a Mattis-like spin syste
@20# with constraints. In Sec. III, we describe the clus
variation method that we shall apply to the study of the th
modynamics of the system@21–23#. We first describe the
procedure for a general disordered system. We then res
ourselves to the hexagonal approximation in which the c
ters are made of a maximum of six triangles. Next, we a
lyze the pure~without disorder! system again, as a particula
limiting case with trivial disorder. The results for the full
disordered system, and in particular the transition to a fro
phase, are presented in Sec. IV. After giving a few res
following from a reduced variable analysis, we present
complete phase diagram of the system. In Sec. V, we st
two other variants of the disorder. In particular, we discu
the specificity of the ‘‘physical’’ constraint on the rando
bending rigidity. We present for each type of disorder t
corresponding phase diagram. Some concluding remarks
gathered in Sec. VI.

II. FOLDING WITH QUENCHED
RANDOM BENDING RIGIDITY

In this section, we first recall the rules of folding for th
triangular lattice@13#. We then introduce disorder in th
problem in terms of arandom bending rigidity.

A. Folding of the triangular lattice: pure case

Let us consider a regular triangular lattice that can
folded onto itself along its bonds. We allow only for com
plete foldings which result intwo-dimensionalfolded con-
figurations. Each bond thus serves as a hinge between its
neighboring triangles and is in either one of the two sta
folded ~with the two neighboring triangles face to face! or
not ~with the two neighboring triangles side by side!. A
folded state of the system is entirely determined by the lis
its folded bonds. In this definition, the folding process m
cause self-intersections and the model corresponds
‘‘phantom’’ membrane. Also this does not distinguish b
tween the different ways of folding that result in the sam
folded state.

One can easily see that, among the 26 possible fold con-
figurations for the six bonds surrounding a given vertex, o
11 states are allowed, corresponding to actual foldings of
surrounding hexagon@13#. These configurations are dis
played in Fig. 1. It can be checked that imposing everywh
one of these eleven local environments is sufficient to de
the folding consistently throughout the lattice. The folding
the triangular lattice is thus simply expressed as an 11-ve
model on the lattice. Note that, even if the folding is defin
locally, its nature is highly nonlocal. Since all vertices in F
1 have an even number of elementary folds, these folds f
folding lines without end points. Moreover all ‘‘folded’’ ver
tices@vertices~b!–~k! in Fig. 1# have at least one fold on th
left half of the hexagon and one on the right. Thus folds
forced to propagate through the entire lattice@14#.
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Folding can also be expressed with spin variablessi561
living on the elementary triangles, which indicate wheth
the i th triangle faces up or down in the folded state. The s
variable changes its sign between two neighboring triang
if and only if their common bond is folded, i.e., folding line
are domain walls of the spin system. One can think of
spin as the normal vector to the triangle. We depict the c
responding spin configurations on Fig. 1. Note that there
two spin configurations for each folded state, due to the
generacy under reversal of all spins.

Clearly, the only allowed vertex environments are tho
with exactly zero, three, or six surrounding up spins. In oth
words, for a spin configuration to correspond to a fold
state, the six spinssi ~i51,2,...,6! around any vertexv must
satisfy thelocal constraint@14#

Sv[ (
i around v

s i50 mod 3, ~2.1!

sinceSv52 ~number of up spins! 2 6 is a multiple of 3 if
and only if the number of up spins itself is a multiple of
Folding is thus expressed here as aconstrained Z2 spin sys-
tem.

The statistical behavior of this system has been ext
sively studied, using a transfer-matrix formalism@13,15#, the
correspondence with a solvable three-coloring model@14#
and a cluster variation method@16#. Introducing a bending
energy term2Js is j between nearest neighbors and a ma
netic field term2Hs i , the following model Hamiltonian
was considered:

HIsing52J(
~ i j !

s is 2H(
i

s ı . ~2.2!

This is nothing but the Ising Hamiltonian, which is her
however, coupled to the local constraint~2.1!. In the folding
context, the magnetization simply measures the projec
area of the lattice~i.e., the algebraic area of the domain e
closed by its boundary! and the magnetic field can thus b
interpreted as a lateral tension term. For convenience we
use the reduced coupling and magnetic field

K[J/kBT, h[H/kBT. ~2.3!

The phase diagram of the system is shown in Fig. 2.
order to characterize each phase, two order parameters
introduced. One is the usual magnetization,

M5
1

Nt
K S (

n
s i1(

,
s i D L , ~2.4!

FIG. 1. The 11 local fold environments for a vertex. Folds a
represented by thick lines. One of the two~opposite! possible spin
configurations on the triangles is also indicated.
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55 239FOLDING OF THE TRIANGULAR LATTICE WITH . . .
and the other is the staggered magnetization

M st5
1

Nt
K S (

n
s i2(

,
s i D L , ~2.5!

where the sum is performed separately on triangles poin
up and down, dividing the original triangular lattice into tw
interpenetrating sublattices. HereNt is the total number of
triangles in the system. Three phases exist: a comple
flat phase~M561,M st50!, a disordered folded state~M50,
M st50!, and a compactly ordered folded state~M50,
M stÞ0! @15,16#. Note that the flat phase has a maximal ma
netization uM u51 and is indeed frozen in the pure com
pletely flat state with all spins aligned. There is no flat pha
with intermediate~0,uM u,1! magnetization. Three first
order transition linesh5hc(K), 2hc(K) (K,Kc), and
h50(K.Kc) separate the three phasesM50, 61, with a
triple point atKc;0.1 ~estimated from either the transfe
matrix @15# or the cluster variation@16# approach!. For nega-
tive K, the transition between the disordered folded ph
and a compactly ordered~antiferromagnetic! folded phase
with staggered order parameterM stÞ0 is found to be con-
tinuous ath50 @16#. This transition is represented by th
broken line of Fig. 2, which intersects the horizontal~h50!
axis atK;20.284. We see here that, when compared w
the usual unconstrained Ising model, the phase diagram
been strongly modified. In particular, it is now asymmet
with respect toK with the usual continuous ferromagnet
transition replaced by an abrupt first-order transition to
completely ordered phase.

B. Quenched random bending rigidity

What kind of disorder should one introduce in the abo
model @Eq. ~2.2!#? Since we are dealing with folding of
phantom object with a two-dimensional resulting fold
state, we cannot distinguish between6180° folds, thus we
cannot introduce any spontaneous curvature term. Diso
will appear here in the form of a random bending rigid

FIG. 2. Phase diagram in the (K,h) plane. Three first-order lines
h5hc(K), 2hc(K) (K,Kc), andh50 (K.Kc) separate the three
phasesM50, 61 and meet at the triple point~Kc ,0!. The dashed
line represents the transition line between the disordered fo
phaseM50, M st50, and the compactly ordered folded pha
M50, M stÞ0.
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Ki j . The most general Hamiltonian with random neare
neighbor couplingKi j and a constant external fieldh is ~we
drop thekBT factor, thus using reduced coupling constan!

Hrandom5(
~ i j !

2Ki js is j2h(
i

s i . ~2.6!

There are several possible choices forKi j . One possibility is
the Edwards-Anderson model for spin glasses@24#, where
Ki j56K independently on each bond. Such a model is
teresting as it may have a spin-glass phase. In such a ph
spins are randomly oriented~M50 andM st50!, but the fol-
lowing order parameterq takes a nonzero value:

q5
1

Nt
(
i

^s i&
2. ~2.7!

Here the overbar stands for the quenched average ove
randomness. We shall discuss this type of disorder in Sec

As has been discussed in the Introduction, we are in
ested in another type of ‘‘physical’’ disorder where the ra
dom bending rigidity has been generated by a prior irreve
ible folding of the lattice@4,19#. We have in mind the picture
of a crumpled piece of paper marked with irreversib
creases. The effect of this irreversible crumpling is to impo
the corresponding crumpled state as the new ground sta
the system. No frustration will occur as long as one does
strain the paper. The model Hamiltonian should thus h
that crumpled state as its ground state and this informa
should be included inKi j . One natural choice forKi j with a
‘‘random’’ ordered phase and no frustration is that of a M
tis model@20#. In this model, the bending rigiditiesKi j are
functions of a set of random face variablesti :

Ki j5Kt it j . ~2.8!

The ti561 are ‘‘frozen’’ according to a specified probabi
ity distribution rt(t1 ,t2 ,...,tNt) reminiscent of the first ir-
reversible crumpling process. The total Hamiltonian is th
given by

HMattis52K(
~ i j !

t it js is j2h(
i

s i . ~2.9!

As is well known, if there is no constraint on spin variable
the gauge transformation

s i8→s it i ~2.10!

makes the above model Eq.~2.9! in zero external fieldh50
equivalent to the pure system@20#. At K5`, the state with
s i5t i is recovered as the ground state.

In our model, the spin variables are constrained by
~2.1! and the above gauge transformation cannot be p
formed since it does not preserve the folding constra
Moreover, the ground states i5t i can be reached only if the
t variables themselves obey the folding constraint:

(
i around v

t i50 mod 3. ~2.11!

d
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240 55P. Di FRANCESCO, E. GUITTER, AND S. MORI
This type of t configuration is what we call a ‘‘physical’
disorder. We shall restrict ourselves to this type of disor
in Secs. III and IV. We will return to other types of disord
~such as the Edwards-Anderson model! later in Sec. V.

From the above discussion, we understand the phys
origin of the local constraint on thet variables. Then wha
probability distributionrt(t1 ,t2 ,...,tNt) should we use for
them? Since thet variables obey the same constraint as
pures system described in the first part of this section,
can take advantage of the solution of this pure system
simply assuming that thet distribution is described by a
particular ~appropriately chosen! point in the disordered
phase of the phase diagram of Fig. 2. A natural choice is
point at the origin of the phase diagram (K5h50) since it
then does not involve any energy parameter for the diso
and treats as equiprobable all allowed configurations
‘‘physical’’ disorder. In other words, we shall take for th
distribution rt(t1 ,t2 ,...,tNt) the density of the pure con
strained problem atK5h50. Due to the constraint, this den
sity remains nontrivial.

III. CLUSTER VARIATION METHOD
FOR THE DISORDERED SYSTEM

In this section we explain in detail the hexagon appro
mation of the cluster variation method~CVM! generalized to
a random system@21–23#. In Sec. III A, we explain the
method in the general case. In Sec. III B, we apply the CV
to the pure system (Ki j5K) as a limiting case with trivial
disorder. As mentioned above, this is also instrumenta
give an explicit form forrt , which is necessary to tackle th
fully disordered case. We also discuss several symm
breakings of the model.

A. The CVM and its hexagon approximation

The CVM is a closed-form approximation based on t
minimization of an approximated free-energy density fun
tional, which is obtained by a truncation of the cluster e
pansion of the full free-energy density functional appear
in the exact variational formulation of the problem@25,26#.
Consider our spin systemsi with Nt sites and Hamiltonian
~2.6! @23#. The configuration of the random bond couplin
Ki j is specified by a probability distributionP($Ki j %). In our
case of ‘‘physical’’ disorder whereKi j5Kt it j , we shall
have

P~$Ki j5Kt it j%!5rt~t1 ,...,tNt!. ~3.1!

The discussion below is, however, more general.
In terms of a density matrixr(s1 ,s2 ,...,sNt

u$Ki j %) for
each configuration$Ki j %, we define the variational free en
ergy associated with the HamiltonianHrandom~s,$Ki j %! ~from
now on, we use the notations5$si%! as

F~$Ki j %!5F(
s

r~su$Ki j %!@Hrandom~s,$Ki j %!

1 ln r~su$Ki j %!#G
min

. ~3.2!

The subscript min means that the above expression mus
r
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taken at its minimum with respect tor~su$Ki j %!. This is the
well-known variational principle. The minimization is pe
formed at fixed$Ki j % with the normalization constraint:

(
s

r~su$Ki j %!51. ~3.3!

The quenched free-energyF is then given by

F5 (
$Ki j %

P~$Ki j %!F~$Ki j %!, ~3.4!

where the sum extends over all possible realizations of
disorder. Upon introducing the generalized density matrix

r~s,$Ki j %!5P~$Ki j %!r~su$Ki j %!, ~3.5!

one can easily show that

F5F (
s,$Ki j %

r~s,$Ki j %!@Hrandom~s,$Ki j %!

1 lnr~s,$Ki j %!#G
min

1SDis ~3.6!

where the minimization is now on a densityr~s,$Ki j %! for
boths and$Ki j % with the constraint

(
s

r~s,$Ki j %!5P~$Ki j %!. ~3.7!

The quantitySDis is a constant term depending only on th
probability distribution for the disorder and reads

SDis52 (
$Ki j %

P~$Ki j %!lnP~$Ki j %!. ~3.8!

In such a scheme it can be shown that the quenched ave
of the expectation valuê A(s,$Ki j %)& of an operator
A(s,$Kı j%) is given by

^A~s,$Ki j %!&5 (
$Ki j %

P~$Ki j %!^A~s,$Ki j %!&

5 (
$Ki j %,s

rmin~s,$Ki j %!A~s,$Ki j %!, ~3.9!

where rmin~s,$Ki j %! is the density at the minimum of th
quenched free-energy functional~3.6!.

The CVM is obtained by taking the thermodynamic lim
Nt→` and truncating the cumulant expansion for the e
tropy S[2(s,$Ki j %

r(s,$Ki j %)lnr(s,$Kij%) appearing in Eq.
~3.6! to a set of ‘‘maximal preserved clusters’’Gi ,
i51,2,...,r ~and all their translated images!. The variational
principle will then be applied to the reduced density mat
rG i

(s,$Ki j %) associated with the maximal preserved clust
Gi , i.e., the minimization will be performed on this reduce
set of densities.

In the hexagon approximation for the triangular lattic
the largest clusters appearing in the expansion are hexag
Hereafter we restrict our presentation to the case of
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55 241FOLDING OF THE TRIANGULAR LATTICE WITH . . .
Mattis-like couplingKi j5Kt it j . For the other cases, th
generalization is straightforward. We introduce the redu
density matrix for a hexagon:

r6~s1 ,s2 ,s3 ,s4 ,s5 ,s6 ,t1 ,t2 ,t3 ,t4 ,t5 ,t6!.
~3.10!

The spins in the argument ofr6 follow each other counter
clockwise in the hexagon, and the first one is on theA sub-
lattice ~see Fig. 3!, i.e., is pointing up. This reduced densi
matrix represents the probability for one hexagon to h
fixed values ofs andt. It is normalized according to

(
$s%

r6~$s%,$t%!5rt,6~$t%!, ~3.11!

wherert,6 is the six-point probability for the disorder var
able on a hexagon as obtained from the corresponding pa
trace ofrt(t1 ,...,tNt) in the thermodynamic limit. We as
sume that this six-point reduced density is the same for e
hexagon, i.e., that the distribution of disorder is translati
ally invariant.

We also introduce the site and pair density matric
r1A(B)~s1,t1!, r2~s1,s2,t1,t2!, which are defined as symme
trized partial traces ofr6 by

r2~s1 ,s2 ,t1 ,t2!

[ 1
6 (

s3 ,s4 ,s5 ,s6
t3 ,t4 ,t5 ,t6

3@r6~s1 ,s2 ,s3 ,s4 ,s5 ,s6 ,t1 ,t2 ,t3 ,t4 ,t5 ,t6!

1r6~s3 ,s2 ,s1 ,s4 ,s5 ,s6 ,t3 ,t2 ,t1 ,t4 ,t5 ,t6!

1r6~s3 ,s4 ,s1 ,s2 ,s5 ,s6 ,t3 ,t4 ,t1 ,t2 ,t5 ,t6!

1r6~s3 ,s4 ,s5 ,s2 ,s1 ,s6 ,t3 ,t4 ,t5 ,t2 ,t1 ,t6!

1r6~s3 ,s4 ,s5 ,s6 ,s1 ,s2 ,t3 ,t4 ,t5 ,t6 ,t1 ,t2!

1r6~s1 ,s3 ,s4 ,s5 ,s6 ,s2 ,t1 ,t3 ,t4 ,t5 ,t6 ,t2!],

r1A~s1 ,t1![ (
s2 ,t2

r2~s1 ,s2 ,t1 ,t2!,

r1B~s2 ,t2![ (
s1 ,t1

r2~s1 ,s2 ,t1 ,t2!. ~3.12!

FIG. 3. Labeling of the spins on an elementary hexagon. E
site i ~51,...,6! supports a spin variablesi and a disorder variable
ti . The reduction process fromr6 to r2 and tor1A(B) is also indi-
cated.
d
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Here we have introduced two site density matrices,r1A and
r1B, corresponding to the two interpenetrating sublattices
which the triangular lattice can be divided~see Fig. 3!.

After the appropriate truncation of the cumulant expa
sion of S at the level of hexagonal clusters, we get the a
proximate CVM quenched free energy per hexagon a
functional of r6($s i%,$t i%) only @by implicit use of Eq.
~3.12!# @25#,

f ~r6~$s i%,$t i%!!523K Trs,t@t1t2s1s2r2~s1 ,s2 ,t1 ,t2!#

2h Trs@s1r1A~s1 ,t1!#

2h Trs@s2r1B~s2 ,t2!#1Trs,t~r6lnr6!

23 Trs,t~r2lnr2!1Trs,t~r1Alnr1A!

1Trs,t~r1Blnr1B!1Trt$lt~$t i%!

3@Trsr6~$s i%,$t i%!2rt,6~$t i%!#%1St ,

~3.13!

to be minimized with respect tor6($s i%,$t i%). @The cumu-
lant expansion of the entropy can be understood as follo
We write the truncated entropy as

S5 (
hexagonsH

SH2 (
pairs P

SP1 (
triangles T

ST ,

where we must first subtract the contribution of pairs
neighboring triangles and readd that of single triangles
avoid overcounting. Noting that the numbersNH , NP , NTA ,
andNTB of, respectively, hexagons, pairs and triangles of
sublattices A and B satisfy NP/NH53, NTA/NH
5NTB/NH51, this leads to the entropy per hexagon appe
ing in Eq. ~3.13!.# Here Tr stands for trace andlt~$ti%! are
Langrange multipliers that ensure the normalization
r6($s i%,$t i%), according to Eq.~3.11!. St is the entropy for
the disorder variableti , for which we also use the CVM
estimate:

St5Trt~rt,6lnrt,6!23 Trt~rt,2lnrt,2!12 Trt~rt,1lnrt,1!,
~3.14!

wherert,2 and rt,1 are partial~symmetrized! traces ofrt,6.
With the above definitions, our free energy can be regar
as a function ofr6 only and taking the derivative with respe
to a generic element ofr6 we find the stationarity conditions

r6~$s i%,$t i%!

5expF2lt~$t i%!1
K

2 (
i51,6

t it i11s is i111
h

3 (
i51,6

s i G
3@r2~s1 ,s6 ,t1 ,t6!r2~s1 ,s2 ,t1 ,t2!

3r2~s3 ,s2 ,t3 ,t2!r2~s3 ,s4 ,t3 ,t4!

3r2~s5 ,s4 ,t5 ,t4!r2~s5 ,s6 ,t5,t6!#
1/2

3@r1A~s1!r1B~s2!r1A~s3!r1B~s4!

3r1A~s5!r1B~s6!#
21/3, ~3.15!

with the conventions75s1, t75t1.
One can solve this set of equations with the definitions

Eqs. 3.12 and the normalization constraint~3.11! by the so-

h
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called natural iteration method@21#. Starting from some as
sumption onr2 and iterating the above equation,r6 con-
verges to a solution of Eq.~3.15! which is moreover a loca
minimumof the approximate free energy~3.13!. To find a
global minimum, it is in general necessary to start the ite
tion with different sets of initial conditions onr2 appropri-
ately chosen to reach the different expected phases. At
step, the normalization condition~3.11! is recovered by ad-
justing the Lagrange multiplier for each realization of t
disorder on the hexagon. Before going to the analysis of
model with disorder, in Sec. III B we will revisit the pur
case@16#. One reason is that we need to fix the probabil
distribution for the disorder variablesrt~$ti%!.

B. Pure case and explicit form forrt

In this section, we reconsider the pure case forh50 in
detail within the CVM approximation as a particular trivi
realization of disorder where allKi j are constant and equal t
K @16#. We only need to consider the ‘‘pure’’ six-point func
tions r6~si!, which do not depend on theti variable any
longer. We can easily recognize that the 2311522 elements
of r6, which correspond to the weights for each state in F
1, are not all independent since some of the states are re
by simple symmetries and should thus have the same we
This of course assumes that the corresponding symme
are not spontaneously broken. Hereafter we only conside
system forh50 and consider three types of solutions cor
sponding to the three different symmetries of the spin sys
in the phase diagram of Fig. 2@16#.

~i! Disordered folded phase: we do not allow for a
spontaneous symmetry breaking in the system. Using r
tional symmetry and the symmetry under reversal of
spins, we end up with only four independent weightsZ0,1,2,3
corresponding to vertices with, respectively, zero, two, fo
or six surrounding folds.

~ii ! Ferromagnetic phase: we allow for a spontane
ferromagnetic symmetry breaking~MÞ0!. Then the two ver-
tices with no fold have different weightZ0 andZ0 according
to their66 magnetization. The other vertices are neutra
this respect and we end up with five different weights.

~iii ! Antiferromagnetic phase: we allow for a spontan
ous antiferromagnetic symmetry breaking~M stÞ0!. Then all
weightsZi have to be doubled into (Zi ,Zi) except for the
vertex with no fold~i50! which is neutral in the staggere
magnetization. We end up with seven different weights.

The spin configurations, their degeneracies, and the n
tions for their weights are summarized in Table I. Of cour
case~i! can be recovered from either case~ii ! or ~iii ! as a
particular realization with no spontaneous symmetry bre
ing ~i.e., Zi5Zi for all i !. Also, we assume that the tw
~ferromagnetic and antiferromagnetic! symmetries cannot be
broken simultaneously. We thus need to study only cases~ii !
and ~iii ! above to get the complete phase diagram of
system~here ath50!.

At first we consider the ferromagnetic case~ii !. In this
case, the stationarity condition reduces to the following n
linear equations between the weightsZ0 ,Z0,Z1 ,Z2 ,Z3:

Z05exp~2l13K !~y11!3/~y1!2,

Z05exp~2l13K !~y22!3/~y2!2,
-
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Z15exp~2l1K !~y11!~y22!~y12!/~y1!~y2!,

Z25exp~2l2K !~y11!1/2~y22!1/2~y12!2/~y1!~y2!,

Z35exp~2l23K !~y12!3/~y1!~y2!, ~3.16!

involving a single Lagrange multiplierl. Here,y11 , y12 ,
y22 , y1 , andy2 are two- and one-point functionsr2~s1s2!
andr1~s1! ~there is no difference here between sublatticesA
andB!, which are defined as follows:

y115r2~11 !5Z012Z112Z2 ,

y125r2~12 !5r2~21 !5Z114Z21Z3 ,

y225r2~22 !5Z012Z112Z2 ,

y15r1~1 !5Z013Z116Z21Z3 ,

y25r1~2 !5Z013Z116Z21Z3 . ~3.17!

The above equations imply the following simple relations

~Z0Z0!
1/2

Z1
5
Z1
Z2

5
Z2
Z3

5exp~2K !
~y11!1/2~y22!1/2

y12
.

~3.18!

Introducing the two reduced variables

x[
Z1

~Z0Z0!
1/2
, y[

Z0

Z0
, ~3.19!

we can express all the weights in terms ofx, y, and the
normalization factorw0[(Z0Z0)

1/2:

Z05y11/2w0 , Z05y21/2w0 ,

Z15xw0 , Z25x2w0 , Z35x3w0 . ~3.20!

The above equations~3.16! reduce to the following non-
linear equations for the reduced variables:

y5S y12y1/2~x1x2!

112y1/2~x1x2! D
3S 11y1/2~3x16x21x3!

y1y1/2~3x16x21x3! D
2

,

~3.21!

TABLE I. Independent hexagon spin configurations. The cor
sponding elements ofr6 and the degeneracies are indicated.

Spin Conf.
~i!
Dis.

~ii !
Ferromagnetic

~iii !
Antiferromagnetic Deg.

111111 Z0 Z0 Z0 1
222222 Z0 Z0 Z0 1

111222 Z1 Z1 Z1 3
222111 Z1 Z1 Z1 3

122112 Z2 Z2 Z2 6
211221 Z2 Z2 Z2 6

121212 Z3 Z3 Z3 1
212121 Z3 Z3 Z3 1
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x5
y~x14x21x3!

u@112y1/2~x1x2!#1/2@y12y1/2~x1x2!#1/2
,

~3.22!

whereu5exp(2K). The parametery measures the spontan
ous ferromagnetic symmetry breaking while the parametex
measures the fugacity per folded bond.

We can easily see that Eq.~3.21! has two obvious solu-
tions: a solutiony51 andx arbitrary and a solutionx50
andy arbitrary. The latter solution is also a solution of E
~3.22!. It means that each vertex of the membrane can
only in one of the two configurations without foldZ0 or
Z0. The solution cannot determine the ratioy5Z̄0/Z0 , i.e.,
the proportion of each state. However, with only these t
vertices at hand, no fold can ever be created and the
possible global states for the lattice are the state with
spins up~M51! and that with all spins down~M521!. The
above solution simply describes an arbitrary superpositio
these two~symmetric! pure flat states. The fact that the mem
brane is indeed frozen in a pure completely flat state is
ther confirmed by computing the entropy that is found to
exactly zero, and by computing the free energy, that is fo
to be f523K per hexagon, as expected~there are three
bonds per hexagon!.

The first solution withy51 means that the spontaneo
symmetry breaking does not occur and that the membran
in the disordered folded state (Z05Z0). The value ofx is
then fixed by Eq.~3.22! @16#:

x5
~22u!1A~32u2u2!

~2u21!
, ~3.23!

which has a solution forK< ln@(11A13)/2#/2. Comparing
the corresponding free energy to that of the pure flat state
get a first-order transition from disordered folded to pur
flat atKc;0.1013@16#.

We also looked numerically for another nontrivial sol
tion with spontaneous symmetry breaking~yÞ1! and inter-
mediate magnetization~xÞ0! but did not find any. We con-
clude that there is no possible flat phase with 0,uM u,1 and
the above three phases~M561 or 0! are the only stable one
for positiveK.

As has been discussed previously, the above analys
also instrumental for the estimation of the probability dist
bution rt,6~$ti%! of the disorder variablest. We can use in-
deed forrt,6 the distributionr6 above atK5h50, charac-
terized byy51 andx52 @16#. In other words, if we define
P0,1,2,3as the weightsrt,6 for the local realizations of disor
der with zero, two, four, or six creases around the vertex,
learn that the ratiosP1/P0 , P2/P1 , andP3/P2 must all be
identical and equal to two~see Fig. 4!. Their values are then
fixed by the normalization:

2P016P1112P212P351 ~3.24!

leading to@16#

P05
1
78 , P15

2
78 , P25

4
78 , P35

8
78 . ~3.25!

More generally, we can parametrize the distribution ofP
with one parameter a equal to the ratios
a5P1/P05P2/P15P3/P2 . Beside the natural valuea52
e

o
ly
ll

of

r-
e
d

is

e

is

e

above, the limiting casea50 describes a membrane with n
crease andKi j5K everywhere, whilea5` describes a
membrane with creases everywhere andKi j52K on each
bond.

Now we discuss the compactly ordered~antiferromag-
netic! folded phase~iii !. There are seven independe
weights forh50 ~see Table I! and in this case it is conve
nient to use staggered variablesh i5(21)i21s i with
~21!i2151 on triangles belonging to the sublatticeA and
~21!i21521 on triangles belonging to the sublatticeB. The
corresponding two-point function is simply

rh,2~h1 ,h2!5r2~h1 ,2h2!. ~3.26!

About the one-point function, we have the symme
r1A(s)5r1B(2s) in the antiferromagnetic phase, leadin
to only one~A or B independent! one-point function forh:

rh,1~h!5r1A~h!5r1B~2h!. ~3.27!

As before, the solution of the nonlinear stationarity equ
tions for the seven weights can be parametrized as

Z05w0 , Z15xy1/2w0 , Z15xy21/2w0 ,

Z25x2y1/2w0 , Z25x2y21/2w0 , Z35x3y3/2w0 ,

Z35x3y23/2w0 , ~3.28!

with two reduced variablesx andy solutions of

y5
y11

y22
S y2

y1
D 2/3, x5u21

y11
1/2 y22

1/2

y12
, ~3.29!

where

y115rh,2~11 !5Z113Z21Z21Z3 ,

y125rh,2~12 !5rh2
~21 !5Z01Z11Z11Z21Z2,

y225rh,2~22 !5Z113Z21Z21Z3,

y15rh,1~1 !5Z012Z11Z114Z212Z21Z3 ,

y25rh,1~2 !5Z012Z11Z114Z212Z21Z3.
~3.30!

In Eqs. 3.29, the global normalizationw0 drops out, so the
equations can be solved forx and y as functions of
u5exp(2K). Again the variablex measures the fugacity fo
each fold andy measures the antiferromagnetic spontane
symmetry breaking. Solving the above equations numeric

FIG. 4. Probability distribution for each disorder configuratio
We also show their degeneracies
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by iteration, we find a continuous transition from a diso
dered folded state~y51! to a compactly folded ordere
phase~yÞ1! atKst520.2838. The value ofKst can be found
simply by linearizing Eqs. 3.29 by writingy511e. This
fixes the value ofx to be the real solutionxst of

x3221x2212x2450, ~3.31!

that is

xst571~38712A223!1/3153/~38712A223!1/3
~3.32!

andu to be

ust5
114xst1xst

2

112xst12xst
2 . ~3.33!

IV. RESULTS FOR THE FULLY DISORDERED SYSTEM

In this section we analyze the fully disordered case@Eq.
~2.9!# within the CVM approximation. In Sec. IV A, we
study the system forh50 for several values of the paramet
a for the disorder weights. Next we fixa52 and proceed to
the general (K,h) case in Sec. IV B. We obtain the (K,h)-
phase diagram by use of the natural iteration method.

A. Analysis with reduced elements ofr6 „h50 case…

As in Sec. III, we will study the fully disordered syste
for h50 by reducing the number of elements of the six-po
density matrix. In the case with disorder, the symmetries
the elements of the six-point functionr6($s i%,$t i%) depend
also on the symmetry of the disorder~t variables!, in addi-
tion to the symmetries of the spin variable$s% itself.

In Sec. III B, we have studied the pure model with
antiferromagnetic spontaneous symmetry breaking forK,0.
There we have used the staggered variables
h i5(21)i21s i . If we regard the pure system forK,0 as a
trivial disordered system withrt,6~1,21,1,21,1,21!51, i.e.,
ti is fixed to ~21!i21, andK.0, the above staggered var
ables can be written as

h i5s it i . ~4.1!

The motivation for introducing the staggered variables is t
in these variables the antiferromagnetic order parameterM st
is simply written as

M st5
1

Nt
K S (

i
h i D L , ~4.2!

and we do not have to differentiate between theA and B
sublattices. That is, the staggered variables$hi% are more
natural than the original variables$si% when one discusse
the antiferromagnetic symmetric case.

In the fully disordered system, we are mainly interested
the spontaneous symmetry breaking atK.0 of the following
‘‘frozen’’ order parameter

F5
1

Nt
K S (

i
s it i D L . ~4.3!
-

t
f

as

t

n

@The reader might wonder whether thet→2t symmetry
could lead to a zero quenched average of the order par
eter. However, this symmetry implies only that whenev
rmin~$s%,$t%! is a solution of the variational equation
rmin~$s%,$2t%! is also a solution, but does not imply tha
rmin~$s%,$t%!5rmin~$s%,$2t%!.# This order parameter judge
whether or not the membrane is trapped in the rando
oriented phase, characterized by the disorder variables$ti%.
As in the antiferromagnetic case, it is natural to use the
lowing ‘‘gauged’’ variables:

h i5s it i . ~4.4!

Using these new gauged variables, we classify the
ments of six-point functions by the symmetries of both t
spin configuration and the disorder configuration. Herea
we only consider the system forh50 and allow for two types
of solutions that correspond to whether the frozen order
ists ~FÞ0! or not ~F50!.

~i! Disordered folded phase: we do not allow for a
spontaneous symmetry breaking in the system~M , M st, and
F50!. Each of the four elementary types of disorder co
figuration~with zero, two, four or six creases! leaves us with
a certain number of symmetries, including that under rev
sal of all spins. We use these symmetries on theh variables
to reduce the number of weights. We end up with only
independent weights in this case.

~ii ! Frozen phase: we allow for a spontaneous symme
breaking of the frozen order parameter~FÞ0!. Then all
weights have to be doubled except for those vertices that
neutral in the gauged magnetization~(1

6hi50!. We end up
with 38 different weights in this case.

In Fig. 5, we have summarized the results of this symm
try analysis in case~ii !. Note that case~i! can always be seen
as a particular case of case~ii ! with extra symmetries. On the
left-hand side of each group, we show the disorder confi
ration $ti%. To its right, we present the spin configuratio
$hi% that are independent from each other. We also indic
the notations for their weights and their degeneracies.
two indices i , j in Zi , j indicate a configuration with 2i
creases and 2j folds in thes variable.

In terms of these elements of the six-point function, w
define the two-point functions as follows:

y0,0
6 5Z0,0

6 12Z0,112Z0,212Z1,012Z1,1
6 12Z̃1,1

6 12Z1,2
6

12Z̃1,2
6 12Z2,012Z2,1

6 12Z̃2,1
6 12Z2,2

6 12Ẑ2,2
6 ,

y0,15Z0,114Z0,21Z0,31Z̃1,1
1 1Z̃1,1

2 1Z1,2
1 1Z1,2

2 13Z̃1,2
1

13Z̃1,2
2 1Z1,3

1 1Z1,3
2 1Z̃2,1

1 1Z̃2,1
2 1Z̄2,2

1 1Z̄2,2
2 12Z̃2,2

1

12Z̃2,2
1 1Ẑ2,2

1 1Ẑ2,2
2 1Z2,3

1 1Z2,3
2 ,

y1,05y0,1~Zi , j→Zj ,i !,

y1,1
6 5Z1,1

6 1Z1,2
6 1Z1,2

7 12Z̃1,2
6 1Z1,3

6 1Z2,1
6 1Z2,1

7 14Z2,2
6

12Z̄2,2
6 14Ẑ2,2

6 12Ẑ2,2
7 14Z̃2,2

6 13Z2,3
6 1Z2,3

7 12Z̃2,1
6

1Z3,3
6 13Z3,2

6 1Z3,2
7 1Z3,1

6 . ~4.5!
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FIG. 5. The 38 independent local fold environments for ea
vertex for the four different local realizations of disorder~zero, two,
four, or six creases!. Each disorder configuration is shown at th
left-hand side of each group. To their right, we show the spin co
figurations, the weights, and the degeneracies. We have represe
by thick lines the domain walls for the gauged spin variab
h i5s it i . A subscripti , j indicates a configuration with 2i creases
and 2j folds. The superscript6 indicates a6 contribution toF. In
a F50 phase, equating the1 and 2 weights leaves us with 22
independent weights.

FIG. 6. Definitions of two-point functions. Gauged spin vari
ablesh i5s it i are used. On the left-hand side, we show the diso
der configurationt.
The superscript ofy means that the gauged spin configur
tion $hi% have the corresponding positive~or negative! con-
tribution toF ~see Fig. 6!. Again, the first subscript indicate
whether there is a crease line~1! or not ~0!. The second
subscript means that there is a fold~1! or not ~0! in the
original s variables. Based on these two-point functions,
also introduce the following one-point functions:

y65y0,0
6 1y0,11y1,01y1,1

6 . ~4.6!

In terms of these functions, we write down the stationar
conditions. For example, let us show those forZ0,0

6 , Z0,1, Z0,2,
andZ0,3:

Z0,0
1 5exp~2l013K !~y0,0

1 !3/~y1!2,

Z0,0
2 5exp~2l013K !~y0,0

2 !3/~y2!2,

Z0,15exp~2l01K !~y0,0
1 !~y0,0

2 !~y0,1!/~y
1!~y2!,

Z0,25exp~2l02K !~y0,0
1 !1/2~y0,0

2 !1/2~y0,1!
2/~y1!~y2!,

Z0,35exp~2l023K !~y0,1!
3/~y1!~y2!. ~4.7!

Here, due to the above symmetries, we need only f
Lagrange multipliersl0,1,2,3, one for each of the four elemen
tary types of disorder in Fig. 4. These Lagrange multiplie
are of course determined by the normalization conditio
like

Z0,0
1 1Z0,0

2 16Z0,1112Z0,212Z0,35P0 . ~4.8!

As in the pure case, we introduce reduced variables. Here
need four ratiosx, y, s, andt defined as

x5u21
y0,1

~y0,0
1 y0,0

2 !1/2
, y5u21

y1,0
~y1,1

1 y1,1
2 !1/2

,

s5S y0,01

y0,0
2 D 1/2S y2

y1
D 1/3, t5S y1,11

y1,1
2 D 1/2S y2

y1
D 1/3, ~4.9!

and for convenience, we also introduce the following av
aged weights:

w05~Z0,0
1 Z0,0

2 !1/2, w15~Z1,1
1 Z1,1

2 !1/2,

w25~Z2,2
1 Z2,2

2 !1/2, w35~Z3,3
1 Z3,3

2 !1/2. ~4.10!

The stationarity conditions are then reduced to the follow
simple form:
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Z0,0
6 5s63w0 , Z0,15xw0 , Z0,25x2w0 , Z0,35x3w0 ,

Z3,05y3w3 , Z3,1
6 5y2t61w3 , Z3,2

6 5yt61w3 ,

Z3,3
6 5t63w3 , Z1,05yw1 , Z1,1

6 5s2t61w1 ,

Z̃1,1
6 5xys61w1 , Z1,2

6 5xs61w1 ,

Z̃1,2
6 5x3/2y1/2~st!61/2w1 , Z1,3

6 5x2t61w1 ,

Z2,05y2w2 , Z2,1
6 5ys61w2 ,

Z̃2,1
6 5x1/2y3/2~st!61/2w2 , Z2,2

6 5s61t62w2 ,

Z̄2,2
6 5xyt61w2 , Z̃2,2

6 5xyt61w2 ,

Ẑ2,2
6 5x1/2y1/2~st!61/2w2 , Z2,3

6 5xt61w2 . ~4.11!

Each weightZi , j is given as the product ofwi by a simple
function ofx, y, s, andt. The rules for thex andy variables
are simple: The disorder configuration splits the bonds i
those that support a crease and those that do not. On
bonds with no crease, we assign a factorAx if the bond has
a fold and 1 otherwise. On the bonds with a crease, we as
a factorAy if the bond has no fold and 1 otherwise. In bo
cases, the nontrivial factor is assigned if the gauged varia
changes sign when crossing the bond. About the factorss
and t, the rules are more subtle. Stills and t both measure
the symmetry breaking of the frozen parameter.

The weightsw0,1,2,3can be expressed as functions ofx, y,
s, andt thanks to the normalization conditions as follows

P05w0@s
31s2316x112x212x3#,

P15w1@2y1s2t1s22t12xyz12xyz2112xy12xy21

14x3/2y1/2s1/2t1/214x3/2y1/2s21/2t21/21x2t1x2t21#,

P25w2@2y
21ys1ys2112x1/2y3/2s1/2t1/2

12x1/2y3/2s21/2t21/21st21s21t2213xyt13xyt21

12x1/2y1/2s1/2t1/212x1/2y1/2s21/2t21/21xt1xt21#,

P35w3@ t
31t2316y~ t1t21!13y2~ t1t21!12y3#.

~4.12!

In Eq. ~4.9!, the right-hand side of each equation is thus
function ofx, y, s, andt only. These equations can be simp
solved numerically by iteration.

Hereafter we show the results of this numerical analy
We first fix a52 for the weightsP0,1,2,3. We start the itera-
tion for K50 with a fully symmetric solution that corre
sponds to a disordered phase. We proceed to the itera
until the required precision is reached. We then increasK
by dK and restart the iteration. For this next value ofK, we
start the iteration from the solution of the iteration for t
previous value ofK. This procedure allows us to follow th
continuous evolution withK of a given local minimum of the
free energy. We increaseK from 0 to 0.2 and then decreas
it back to 0. In this way, if the system has a first-order tra
sition with two local minima of the free energy in compe
o
the

gn

le

a

s.

on

-

tion, the method will show a hysteresis. Note that this ite
tion procedure is slightly different from the natural iteratio
method that we shall use in Sec. IV B, where we searc
solution for the nonlinear stationarity equations from diffe
ent initial assumptions corresponding to the different p
sible symmetries.

In Fig. 7, we show the behavior of the frozen order p
rameterF as a function of the bending rigidityK. For small
K ~,KF!, F is clearly zero and the system is in a disorder
folded phase. AtKF , the system shows a first-order trans
tion from this disordered folded phase to a frozen ph
FÞ0. The value ofuFu is strictly less than 1, thus the syste
is only partially frozen. When the iteration is performed wi
first increasingK and then decreasing it back to zero, we s
a clear hysteresis with two jumps on both sides ofKF . The
value of the transition pointKF can be fixed precisely by
comparing the value of the free energies for both phas
This is shown in Fig. 8. The hysteresis allows us to s
clearly the crossing of the two free-energy lines correspo

FIG. 7. Frozen order parameterF versus bending rigidityK. F
changes fromF50 to FÞ0. The system shows a hysteresis wi
two separate jumps for two values ofK on each side ofKF . The
position ofKF is determined precisely by comparing the free en
gies of both phases, as shown in the next figure.

FIG. 8. Free energyf per hexagon versus bending rigidityK.
The thin straight line corresponds to a completely frozen ph
F51. This phase is never stable. The two thick lines correspon
disordered folded phaseF50 ~for smallK! and to the frozen phase
0,uFu,1 ~for largerK!. The two lines cross at the transition poin
KF . As shown in the inset, we findKF;0.166~1!.
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ing to both phasesF50 andFÞ0. Indeed the system stay
for some time after the transition point in the wrong me
stable state. As shown in the inset of the figure, the transi
occurs atKF;0.166~1!.

Figure 9 shows the behavior of the two-point functi
^h1h2&52(internal energy)/K versus K. It also shows
clear evidence of first-order transition with a hysteresis in
results of the iteration procedure. AtK50, the disorder vari-
ablesti and spin variablessi decouple. The value of the
function is then^h1h2&5t1t2^s1s2&at K505(2 1

3)3(2 1
3)

5 1
9, as found here~the value2 1

3 is easily obtained from the
analysis of the pure case atK50 of Sec. III B @16#!.

Next, we studied the system for several values of the
rametera for the disorder weights. As has been explain
previously,a50 means that there is no crease in the sys
anda5` corresponds to the pure antiferromagnetic syste
From the previous analysis, we know that the system sh
a first-order transition for botha50 anda52 above. Ata50
~where F5M ! the transition is fromF5M50 to F5M
561 @15#. At a52, the discontinuity is smaller withuFu,1
in the frozen phase. We also know that the transition
comes continuous and second order ata5` @16#. The tran-
sition point is atK50.284 as obtained before. From the r
sults in Fig. 10, we see that the discontinuity of the transit
becomes smaller as we increase the parametera. The conti-
nuity of the transition seems to be recovered only ata5`,
although it is difficult to determine whether the transition
of first order or of second order when the discontinuity b
comes too small.

B. „K,h… phase diagram

Let us now turn to the analysis of the whole phase d
gram in the (K,h) plane. It is, of course, symmetric wit
respect to theh50 axis. It is shown in Fig. 11 forh>0 as
obtained from the CVM stationarity equations solved by
natural iteration method@21#. Here we have seta52 again
and the results were obtained with a set of 22322 indepen-
dent weights, i.e., without making any assumption on
symmetries of the different phases, except in the initial c
ditions of the iteration. At sufficiently large values ofh and
for h.2K, the completely flat phase withM51 is stable
with respect to both the disorder and the thermal fluctuatio
At sufficiently large values ofK and forh,2K, the system

FIG. 9. Gauged two-point function ^h1h2&5
2(internal energy)/K versusK. We see here also a clear eviden
of first-order transition with a hysteresis.
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is in a frozen phase withM50,M st50, andF;1. There is a
first-order transition line between these two phases, whic
roughly given byh52K. The position of the line can be
obtained by requiring that the free energy of the complet
flat phase and that of the frozen phase take the same v
i.e., by solving the equationf c.flat5f frozen. About f c.flat, the
bending energy contribution per hexagon is estimated
23K^t1t2s1s2&523K(t1t2)523K3(2 1

3)5K, while
the entropy vanishes in the absence of local excitations.
thus get the exact free energyf c.flat522h1K. The estima-
tion of f frozen is more difficult and we simply assume th
f frozen.23K as in a completely frozen phase, because
frozen order parameterF is almost saturated to 1. From thes
estimations, we obtain the transition lineh.2K, which is
what we indeed observe.

For smallerK andh, the system is in a disordered folde
phase withF50 andM;0. As for the pure system,M does
not vanish exactly forh.0 but still remains very small. This

FIG. 10. Frozen order parameterF versusK for several values
of a ~we only show here the caseF>0!. The jump in the order
parameter becomes smaller asa becomes larger. The continuou
character of the transition is recovered ata5` ~pure antiferromag-
netic system!. For intermediatea, the iteration gives rise to a hys
teresis.

FIG. 11. Phase diagram in the (K,h) plane for the fully disor-
dered system@Eq. ~2.9!#. First-order lines separate the four phase
~1! Disordered folded phase withM;0, F50, ~2! completely flat
phase withM51 andF50, ~3! flat phase with 0,uM u,1 andF50
and ~4! frozen phase withM50 anduFu.0.
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might be an artifact of the CVM approximation@16#. At
K50, the spin variabless are decoupled from the disorde
variablest and the fully disordered system is the same as
pure system. It has a first-order transition point ath;0.184
@15#. For h50, the above results confirm those of previo
sections with a transition atK5KF .

We have also studied the case of negativeK, although it
is not very physical. Still, it presents interesting features
view of our further study of other types of disorder in Sec.
In the usual Mattis model without constraint and forh50,
the spins develop at large enough negativeK an ‘‘antiferro-
magneticlike’’ order in the gauged variablehi with a ground
stateh i5(21)i21 in the limit K52`. Here such order can
not be reached in general due to the constraint ons, hence
on h. If the disorder has zero or three creases, then
ground stateh i5(21)i21 can be reached and is the uniq
ground-state spin configuration. On the other hand, if it
one or two creases, it cannot be reached and we are le
several lowest-energy spin configurations, as shown in
12. At K52` andh50, the actual ground state will thus b
degenerate with frustrations in the system that might prev
the emergence of a true ‘‘frozen antiferromagnetic’’ ord
The system is thus always disordered in contrast with
pure case where an antiferromagnetic order had develop

From the analysis of the lower-energy states, we can
ily compute the two-point correlation atK→2`, c
5^s1t1s2t2& for the gauged variable~i.e., the internal
energy/K!. For a disorder with zero or three creases, we h
( i around v^s it is i11t i11&526 in the lowest-energy state
For a disorder with one or two creases, we ha
( i around v^s it is i11t i11&522 for all the lowest-energy
states. The averaged value is thus estimated asc
5^s1t1s2t2&5@26(P01P3)22(P11P2)#/65219/39;
20.48. This is what we observe~see Fig. 13!. The two-point
function does not show any discontinuity in all the negat

FIG. 12. Lowest-energy spin configurations$si% for each type of
disorder configuration. Folds are indicated by thick lines a
creases by dashed lines. On the left-hand side, we show the dis
configurations, in the center the corresponding lowest-energy s
which violates the local folding constraint for the disorders with o
and two creases, and on the right-hand side the lowest-energy s
that preserve the constraint, together with their degeneracy.
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K regime, which confirms the absence of transition in t
regime~at h50!.

Finally, we included in Fig. 11 the results of the CVM
analysis for negativeK and arbitraryh. We can see the emer
gence of a new partially flat phase with 0,uM u,1. The na-
ture of the transition between this phase and the disorde
folded phase is unclear, in particular because in the la
phase,M is not exactly zero within the CVM approximation
We then see a limiting point~black circle in Fig. 11! below
which the magnetization does not present any longer a
continuity between the two phases. This also might be
artifact of the CVM, in which case the true transition lin
should be continued to lower values ofK ~dashed line!.

V. OTHER MODELS

In this section, we complete our study by consideri
other variants of the disorder. As discussed in Sec. II, th
are several possibilities for the choice ofKi j . In order to
appreciate the importance of the local folding constraint~2.1!
on the disorder face variablesti , we will study the model
Hamiltonian~2.9! without the local folding constraint onti .
Next we will study the Edwards-Anderson model with th
local folding constraint on the spin variablessi and a bend-
ing term Ki j given by Ki j5Kt i j with a random variable
ti j561 on each bond (i j ). We refer to the former case a
model~2! and to the latter case as model~3!. The difference
between models~2! and~3! is simply the possibility in model
~3! of having vertices with an odd number of surroundi
creases. We also refer to the original model~2.9! with the
folding constraint onti as model~1!.

Before we discuss the corresponding (K,h) phase dia-
grams, let us discuss the two-point function of the system
h50 and largeK. Clearly in this limit, for a fixed disorder
configuration, thesi variables will tend to minimize the en
ergy2Ki js is j , i.e., will tend to maximize the overlap with
the disorder configuration in terms of folded bonds. In oth
words, the system wants to create a fold~s is j521! when-
ever a crease exists~Ki j /K521!, and no fold otherwise. Fo
an arbitrary environment ofKi j around a vertex, we can eas
ily find one corresponding lowest-energy state for thes vari-
ables around the vertex. There are, in general, several
states. In Fig. 14, we have displayed all disorder envir
ments together with one of the corresponding lowest-ene
state. It is interesting to notice that the disorder configu

d
der
te,

tes

FIG. 13. Gauged two-point function̂h1h2&5^s1t1s2t2&
along theK axis ~K,0, h50!.
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55 249FOLDING OF THE TRIANGULAR LATTICE WITH . . .
tions can be arranged in three categories.

~i! Those with an even number of creases and that sa
the folding constraint. The lowest-energy state is unique
has energy26K.

~ii ! Those with an even number of creases but which
not satisfy the folding constraint. The corresponding minim
energy is22K in this case.

~iii ! Those with an odd number of creases. The cor
sponding minimal energy is24K in this case.

Of course, in model~2!, only vertices of type~i! and~ii ! are
allowed while in model~3!, all vertices can appear.

At K→` and h50, we can thus estimate the two-poi
function ^h1h2&5^s1t1s2t2& for model ~2! and
^s1t12s2& for model ~3! by averaging over all disorder en
vironments the corresponding minimal energy. All~allowed!
disorder environments are now equiprobable. Taking into
count the appropriate degeneracies under rotations, we
for model ~3!,

^s1t12s2&5~263126312436223622362633

2436243224312223322362636

2436!/~6364!559/96;0.614. ~5.1!

For model~2! we find easily

^s1t1s2t2&518/32;0.562. ~5.2!

Note that the above calculation assumes that a lowest-en
state can be constructed globally out of these local low
energy configurations. This assumption is acceptable wi
the CVM approximation at least. We show on Fig. 15 t
two-point function for models~2! and ~3! as obtained from
the CVM. They do not display any discontinuity and tend
the values calculated above at largeK. Note also that in
some sense, model~3! is less frustrated than model~2! since

FIG. 14. One of the lowest-energy spin configurations$si% for
each type of disorder configuration. Folds are shown by thick li
and creases by dashed lines. The degeneracies for the disorde
figurations are indicated. We also give the value of the correspo
ing minimal energy.
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a better overlap with a constraineds configuration can be
obtained for those frustrated disorder environments with
odd number of creases.

We have studied the phase diagrams of both models~2!
and~3! within the CVM approximation by use of the natur
iteration method@21#. In order to characterize each phase,
addition to the previous order parametersM andF we will
also use the spin-glass order parameterq defined in Eq.~2.7!,
generalized to the case whereMÞ0:

q5
1

Nt
(
i

@^s i&
22~^s i&!2#. ~5.3!

In model ~2!, bothF andq measure the frozen character
the phase. They are expected to be zero~nonzero! simulta-
neously for our choice of disorder distribution. In model~3!
with no faceti variables,F is not defined any longer and w
will use q as a measure of the frozen character of the pha
The phase diagram for the model~2! is shown in Fig. 16 and
that for the model~3! in Fig. 17. They are, of course, sym

s
on-
d-

FIG. 15. Gauged two-point function̂s1t1s2t2& for model ~2!
~solid line! and^s1t12s2& for model~3! ~dashed line! versusK for
h50.

FIG. 16. Phase diagram in the (K,h) plane for model~2!. We
find three phases:~1! a disordered phase withF5q50, ~2! a com-
pletely flat phase withM51 andF5q50, and ~3! a frozen flat
phase with 0,M,1, q.0 andF.0. The solid line represents
first-order transition line and the dashed line a continuous transi
line.
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metric with respect to theK50 axis but also with respect to
the h50 axis. This is because the transformatio
t i→(21)i21t i in model ~2! and t i j→2t i j in model ~3!
exchange equally probable disorder environments and s
ply changeK into 2K. We only display the phase diagram
for K.0 andh.0.

At K50, both systems are identical to the pure syste
and undergo a first-order transition ath;0.184 to a com-
pletely flat phase. This completely flat phase withuM u51 and
q50 is stable for allK at large enoughh above a line which
is almost the same for the two models up to the tricritic
point of Fig. 16. Ath50, both systems remain in a disor
dered folded phase withM5q50 for any value ofK. This is
different from model~1! where we had a transition to a fro
zen phase atK5KF . The absence of a frozen phase ath50
is again due to the presence of frustration in the system le
ing to several competing lowest-energy states.

For fixed ~large enough! K and increasingh, models~2!
and~3! display different behaviors. As far asq is concerned,
model ~3! develops a nonzero value ofq for any h.0. On
the other hand,q remains zero in model~2! until a critical
value ofh is reached where a continuous transition toqÞ0
occurs. For both models, the ‘‘frozen’’ phase withqÞ0 also
has 0,uM u,1, and is thus partially flat. As to theq50 phase
of model ~2!, we see a nonzero value ofM that is indeed
non-negligible close to the continuous transition line. St
we cannot exclude that this could be, again, an artifact of
CVM approximation. Indeed, by continuity from theK50
line, we would rather expectM50 everywhere in this phase
This issue is thus not fully solved. Finally, the absence of t
q50 phase in model~3! ~except forh50! might also be
interpreted again as an indication of a weaker frustration
compared to model~2!.

VI. DISCUSSION AND CONCLUDING REMARKS

In this paper we have studied the folding of the triangul
lattice in the presence of a quenched random bending rigid
Ki j56K and a magnetic fieldh. We have considered three
types of quenched randomness~1! Ki j5Kt it j with face ran-
dom variablesti561 subject to the folding constraint~2.1!;

FIG. 17. Phase diagram in the (K,h) plane for model~3!. Two
phases are separated by a first-order transition line:~1! a frozen flat
phase with 0,M,1 andq.0 and~2! a completely flat phase with
M51 and q50. The disordered folded phase withM5q50 is
recovered only ath50.
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~2! Ki j5Kt it j without the folding constraint on theti ’s; ~3!
Ki j5Kt i j with a bond random variableti j561. In case~1!,
the folding constraint on the disorder variables was int
duced to describe a particular type of ‘‘physical’’ disord
supposed to mimic that induced in a randomly crumpled s
face, here in the context of the folding of the triangular la
tice. Applying the cluster variation method generalized
random systems, we have studied the phase diagrams o
three models~1!, ~2!, and~3! and their phase transitions. Th
phase diagrams for each case are depicted in Figs. 11
and 17, respectively. The most important difference betw
model ~1! and models~2! and ~3! is that, in the absence o
magnetic field, a frozen phase is found only in model~1!, for
large enoughK. In this phase, the configuration of the tria
gular lattice is trapped in the randomly oriented phase ch
acterized by the configuration of the disorder variables$ti%.
Models~2! and~3! do not present such frozen order ath50.
Indeed, these models, where the quenched randomness
constrained, have strong frustrations because the constra
spins describing the normals to folded configuration fail
be in the ‘‘virtual’’ lowest-energy ground state dictated b
the unconstrained disorder, even if the coupling constanK
becomes large. Forh.0, a frozen phase is recovered in mo
els ~2! and ~3!. We find several first-order or continuou
transition lines between the frozen phase and a comple
flat phase or a disordered folded phase.

At last we make one comment about previous studies
another spin model describing a polymerized membrane w
quenched random spontaneous curvature@27,28#, with
Hamiltonian

H52(
i j

KnW i•nW j2(
i j

DW i j •~nW i3nW j !. ~6.1!

HerenW denotes the normal vector to the membrane emb
ded in 3D space. The first term is a bending rigidity term a
K is the bending rigidity modulus. The second term is
random spontaneous curvature term with a Gaussian p

ability distribution forDW i j with variance

^DW i j
2 &5G2. ~6.2!

In particular, it does not satisfy ‘‘physical’’ constraints o
a spontaneous curvature that would have been induced
crumpling. Within a mean-field study, it was concluded
@27,28# that the model has a wrinkled phase in the~K,G!
plane with nonzero spin-glass order parameterqÞ0. This is
to be contrasted with our results where the existence of s
a phase was crucially requiring the ‘‘physical’’ constraint o
the disorder variable. However, it is not yet clear whether
conclusions for a quenched random rigidity are applicable
the quenched random spontaneous curvature case. To s
the folding of the triangular lattice with random spontaneo
curvature, we would need to go to a three-dimensional e
bedding space. One possibility is to introduce disorder in
96-vertex model of Ref.@17#. This is left for future study.
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