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Folding of the triangular lattice with quenched random bending rigidity
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We study the problem of folding of the regular triangular lattice in the presence of a quenched random
bending rigidity =K and a magnetic fieldh (conjugate to the local normal vectors to the triangl&he
randomness in the bending energy can be understood as arising from a prior marking of the lattice with
guenched creases on which folds are favored. We consider three types of quenched randaim@e’gshysi-
cal” randomness where the creases arise from some prior random foliiljrgMattis-like randomness where
creases are domain walls of some quenched spin sy§ienan Edwards-Anderson-like randomness where the
bending energy is-K at random, independently on each bond. The correspondiriy) (phase diagrams are
determined in the hexagon approximation of the cluster variation method. Depending on the type of random-
ness, the system shows essentially different beha\i8i063-651X97)08001-X]

PACS numbeps): 05.50:+q, 64.60—i, 82.65.Dp

I. INTRODUCTION square lattice, which is allowed to fold onto itself along its
bonds in a two-dimensional embedding space. The constraint
The statistical properties of polymerized membranes, othere makes the folds propagate along straight lines. In the
tethered surfaces, have been widely discussed in the past fgwesence of bending rigidity, the system is always flat.
years [1-3]. A polymerized membrane is the two- A triangular lattice version of this 2D folding model was
dimensional generalization of a linear polyni&r-4]. Its en-  then introduced by Kantor and Jafit3]. Describing thgup
ergy involves both an in-plane elastistrain contribution  or down normal to each triangle by a spin varialte=+1,
and an out-of-planébending one. At low temperature, such the model Hamiltonian translates into that of the Ising model
a membrane with bending rigidity is asymptotically flat andwith, however, constraints on the spin variables. This results
its radius of gyratiorRg increases as the linear internal di- in several new features, and a totally new phase diagram, as
mensionL of the surfacg5-10. As a function of tempera- compared with the usual Ising model3—16. Finally, the
ture, the membrane without self-avoiding interactiphan-  folding of the triangular lattice embedded in a three-
tom membrangundergoes a crumpling transition from the dimensional discrete space has been formulated as a 96-
low-temperature flat phase to a high-temperature crumpledertex mode[17,18.
phase Rg~+/In L) [11,12. The mechanism of the transition,  Constraints do not appear only in the physical degrees of
in particular the stability of the flat phase, is rather subtle andreedom, like local normal vectors. If the membrane has dis-
relies on the coupling between in-plane and out-of-plane deerder, the disorder itself can also be constrained in some
formation mode$5]. cases. For example, if one folds a piece of paper and makes
Very generally, two-dimension&2D) membranes can be a crease, this will generate a spontaneous curvature along the
discretized into triangulations, whose faces are endowedrease. If one now crumples the paper randomly by hand
with natural Heisenberg spin variables, representing the dif4,19, the generated spontaneous curvature will be directly
rection of the local normal vector to the surfadd. Poly- related to the configuration of the normal vectors of the re-
merized membranes, which have a fixed connectivity, thesulting crumpled configuration. For the latter to be accepted
translate into statistical spin systems on tegular triangu-  as a physical configuration, the normal vectors should also
lar lattice. The corresponding spin system is, however, inobey some constraints. The induced disoi@ethis case the
volved because the resulting spins are not independent vaiinduced random spontaneous curvatuseould thus obey
ables. The constraint of being normal vectors to a surfaceimilar “physical” constraints.
causes a long-range interaction between the spins, which sta- Here we study a simple model of folding with such a
bilizes the ordered flat phase, as opposed to the case of tliphysical” quenched randomness. As a model, we use the
usual two-dimensional unconstrained Heisenberg model, atriangular lattice folded in two dimensions, with a quenched
ways disorderedl,5]. random bending rigidity arising from a first random prefold-
The above mechanism clearly indicates the subtlety of théng process. As our main result, we find a transition to a
correspondence between geometrical objects and spin syw-temperature frozen phase where the lattice is preferen-
tems, especially in two dimensions. In order to understandially trapped into the original random prefolded state. In
this, several simple models have been proposed. The sinorder to clarify the importance of the “physical” constraints
plest one is probably a square lattice model introduced byn the disorder, we then study two other types of disorder
David and Guitter{7]. The model is a discrete rigid bond distributions where the random bending rigidity cannot, in
general, be realized by any particular random prefolding pro-
cess. In such a case, a frustration is created in the sense that
*Present address: Dept. of Physics, Graduate School of Sciencte bending energy cannot be trivially minimized by any
University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113, Japan. folded state of the lattice. In the absence of any other exter-
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nal field, we find that the system is unable to develop a SR v/ ¥ S VA A

frozen phase in this case. % —_>é' % % % %
+ /= - + - +
(@) ) (

The paper is organized as follows. In Sec. Il, we first
discuss the general folding problem of the triangular lattice a (b © @ ) b
and recall some known facts about it. We then describe the N/ N N N~ N/e
precise type of “physical” randomness that we consider on % % % % %—
the lattice and which we write as a Mattis-like spin system © @ @ ) @
[20] with constraints. In Sec. lll, we describe the cluster
variation method that we shall apply to the study of the ther- _
modynamics of the systefi21-23. We first describe the FIG. 1. The 11_ Iocgl fold environments for a vertex_. Fold§ are
procedure for a general disordered system. We then restri&?pr.esem?d by thick l'n.es' One of the.t\éqpposne possible spin
ourselves to the hexagonal approximation in which the Clusgonfuguratlons on the triangles is also indicated.
ters are made of a maximum of six triangles. Next, we ana- Folding can also be expressed with spin variabtes+1
lyze the purgwithout disordey system again, as a particular |ing on the elementary triangles, which indicate whether
limiting case with trivial disorder. The results for the fully {neith triangle faces up or down in the folded state. The spin
disordered system, and in particular the transition to a frozeqarigple changes its sign between two neighboring triangles,
phase, are presented in Sec. IV. After giving a few result§ ang only if their common bond is folded, i.e., folding lines
following from a reduced variable analysis, we present theéye gomain walls of the spin system. One can think of the
complete phase diagram of the system. In Sec. V, we studyjin a5 the normal vector to the triangle. We depict the cor-
two other variants of the disorder. In particular, we d'scussresponding spin configurations on Fig. 1. Note that there are

the specificity of the “physical” constraint on the random o spin configurations for each folded state, due to the de-
bending rigidity. We present for each type of disorder thegeneracy under reversal of all spins.

corresponding phase diagram. Some concluding remarks are cjearly, the only allowed vertex environments are those

gathered in Sec. VI. with exactly zero, three, or six surrounding up spins. In other
words, for a spin configuration to correspond to a folded
Il. FOLDING WITH QUENCHED state, the six spins; (i=1,2,...,6 around any vertex must
RANDOM BENDING RIGIDITY satisfy thelocal constraint[14]

In this section, we first recall the rules of folding for the
triangular lattice[13]. We then introduce disorder in the 2= 2 oi=0 mod 3, (2.1
problem in terms of aandom bending rigidity I aroundv

_ _ _ since,,=2 (number of up spins— 6 is a multiple of 3 if
A. Folding of the triangular lattice: pure case and only if the number of up spins itself is a multiple of 3.

Let us consider a regular triangular lattice that can be0lding is thus expressed here asamstrained Z spin sys-
folded onto itself along its bonds. We allow only for com- &M o _ _
plete foldings which result inwo-dimensionafolded con- ~_ The statistical behavior of this system has been exten-
figurations. Each bond thus serves as a hinge between its tviVely studied, using a transfer-matrix formali¢,15, the
neighboring triangles and is in either one of the two statescorrespondence with a solvable three-coloring mddd|
folded (with the two neighboring triangles face to facer and a cluster variation methdd6]. Introducmg a bending
not (with the two neighboring triangles side by sided  €nergy term—Jojo; between nearest neighbors and a mag-
folded state of the system is entirely determined by the list oft€tic field term —Ha;, the following model Hamiltonian
its folded bonds. In this definition, the folding process mayWas considered:
cause self-intersections and the model corresponds to a
“phantom” membrane. Also this does not distinguish be- H|sing=—~]2 gigJ_HE g. (2.2
tween the different ways of folding that result in the same (i) i

folded state. This is nothing but the Ising Hamiltonian, which is here,

_ One can easily see that, among tﬁepzss!ble fold con however, coupled to the local constraigtl). In the folding
figurations for the six bonds surrounding a given vertex, only . . ;

. : context, the magnetization simply measures the projected
11 states are allowed, corresponding to actual foldings of thé

surrounding hexago13]. These configurations are dis- area of the latticdi.e., the algebraic area of the domain en-
PR ' ; : closed by its boundajyand the magnetic field can thus be

played in Fig. 1. It can be checked that imposing everywhere | I : ; i

one of these eleven local environments is sufficient to deﬁnénterpr:eteddas ad ateral_tensmg term. F(_)r ?o?(;/enlence wewi

the folding consistently throughout the lattice. The folding ofuset e reduced coupling and magnetic fie

the triangular lattice is thus simply expressed as an 11-vertex K=J/kgT, h=H/kgT. (2.3

model on the lattice. Note that, even if the folding is defined

locally, its nature is highly nonlocal. Since all vertices in Fig. The phase diagram of the system is shown in Fig. 2. In

1 have an even number of elementary folds, these folds formrder to characterize each phase, two order parameters are

folding lines without end points. Moreover all “folded” ver- introduced. One is the usual magnetization,

tices[vertices(b)—(k) in Fig. 1] have at least one fold on the

left half of the hexagon and one on the right. Thus folds are M 1 < 2 Ui"’E o,

A Y

forced to propagate through the entire lattidd]. N N;

> , (2.9
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FIG. 2. Phase diagram in th& (h) plane. Three first-order lines
h=h.(K), —h.(K) (K<K,.), andh=0 (K>K,) separate the three
phasesM =0, =1 and meet at the triple poitK.,0). The dashed
line represents the transition line between the disordered foldegandomness. We shall discuss this type of disorder in Sec. V.

phase M =0, M,=0, and the compactly ordered folded phase

M =0, M4#0.

and the other is the staggered magnetization

|3

ai—Ev‘, ai)>, (2.5)
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Kij. The most general Hamiltonian with random nearest-
neighbor coupling;; and a constant external fieldis (we
drop thekgT factor, thus using reduced coupling constants

Hrandom:(izj) _Kijo'io'j_hzi gj. (2.6)

There are several possible choicesHgy. One possibility is

the Edwards-Anderson model for spin glas§24], where

Kjj= =K independently on each bond. Such a model is in-
teresting as it may have a spin-glass phase. In such a phase,
spins are randomly orientg®l =0 andM .=0), but the fol-
lowing order parametey takes a nonzero value:

> (o2 2.7

1
N
Here the overbar stands for the quenched average over the

As has been discussed in the Introduction, we are inter-
ested in another type of “physical” disorder where the ran-
dom bending rigidity has been generated by a prior irrevers-
ible folding of the latticg4,19]. We have in mind the picture
of a crumpled piece of paper marked with irreversible
creases. The effect of this irreversible crumpling is to impose
the corresponding crumpled state as the new ground state of
the system. No frustration will occur as long as one does not

where the sum is performed separately on triangles pointin train the paper. The model Hamiltonian should thus have

up and down, dividing the original triangular lattice into two
interpenetrating sublattices.

Helg is the total number of

at crumpled state as its ground state and this information
should be included ii;; . One natural choice fdK;; with a

triangles in the system. Three phases exist: a completely@andom” ordered phase and no frustration is that of a Mat-
flat phas€M ==1, M =0), a disordered folded stat& =0,

M¢=0), and a compactly

M#0) [15,16]. Note that the flat phase has a maximal mag-
netization|M|=1 and is indeed frozen in the pure com-
pletely flat state with all spins aligned. There is no flat phase

ordered folded staf® =0,

with intermediate(0<|M|<1) magnetization. Three first-
order transition linesh=h,(K), —h.(K) (K<K.), and
h=0(K>K,) separate the three phasés=0, =1, with a
triple point atK,~0.1 (estimated from either the transfer given by
matrix [15] or the cluster variatiohl16] approach For nega-

tive K, the transition between the disordered folded phase

and a compactly orderethntiferromagnetic folded phase
with staggered order parametst,#0 is found to be con-
tinuous ath=0 [16]. This transition is represented by the As is well known, if there is no constraint on spin variables,

broken line of Fig. 2, which

intersects the horizontia=0)

Is model[20]. In this model, the bending rigiditiel;; are
functions of a set of random face variables
Kij:KTiTj' (28)

he ,==*1 are “frozen” according to a specified probabil-
ity distribution pT(Tl,Tz,...,TNt) reminiscent of the first ir-

reversible crumpling process. The total Hamiltonian is then
HMamS:_K(iEj) TiTJ'O'iO'j_hzi agj . (29)

the gauge transformation

axis atkK~—0.284. We see here that, when compared with

the usual unconstrained Ising model, the phase diagram has
been strongly modified. In particular, it is now asymmetric

(2.10

!
0y — 0T

with respect toK with the usual continuous ferromagnetic \akes the above model E@.9) in zero external fieldv=0
transition replaced by an abrupt first-order transition to equivalent to the pure systefa0]. At K=, the state with

completely ordered phase.

B. Quenched rand

What kind of disorder should one introduce in the above'
model [Eq. (2.2)]? Since we are dealing with folding of a
phantom object with a two-dimensional resulting folded ™

om bending rigidity

state, we cannot distinguish betweeri80° folds, thus we

cannot introduce any spontaneous curvature term. Disorder
will appear here in the form of a random bending rigidity

o;=T; is recovered as the ground state.

In our model, the spin variables are constrained by Eq.
(2.1) and the above gauge transformation cannot be per-
ormed since it does not preserve the folding constraint.
Moreover, the ground state = 7; can be reached only if the
variables themselves obey the folding constraint;

>

i around v

=0 mod 3. (2.1)
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This type of r configuration is what we call a “physical” taken at its minimum with respect m(cr|{Kij}). This is the
disorder. We shall restrict ourselves to this type of disordemell-known variational principle. The minimization is per-
in Secs. Ill and IV. We will return to other types of disorder formed at fixed{K;;} with the normalization constraint:
(such as the Edwards-Anderson mgdater in Sec. V.

From the above discussion, we understand the physical
origin of the local constraint on the variables. Then what
probability distributioin(rl,rz,...,rNt) should we use for

them? Since the variables obey the same constraint as thel N quenched free-enerdyis then given by

pure o system described in the first part of this section, we

can take advgmtage of the _soIL_Jtior_1 of_this pure system by F= 2 PUKii HFUK D, (3.4
simply assuming that the distribution is described by a {Kij}

particular (appropriately chosenpoint in the disordered ) o

phase of the phase diagram of Fig. 2. A natural choice is th@/_here the sum _extends_ over all possu_)Ie reahzqtlons of the
point at the origin of the phase diagrai§£h=0) since it disorder. Upon introducing the generalized density matrix
then does not involve any energy parameter for the disorder _

and treats as equiprobable all allowed configurations of p(o.{Kiih) = P({Ki)p( oK}, (3.5
“physical” disorder. In other words, we shall take for the ;e can easily show that

distribution pT(rl,rz,...,er) the density of the pure con-

2 p(al{K;hH=1. 3.3

strained problem & =h=0. Due to the constraint, this den- _
Slty remains nontrivial. f—[U’EK”} p(Uu{Kij})[HrandOn(O'y{Kij})
Ill. CLUSTER VARIATION METHOD
FOR THE DISORDERED SYSTEM FInp(o {Kiyh]| -+ Sois (3.9
min

In this section we explain in detail the hexagon approxi- o .
mation of the cluster variation methd@VM) generalized to Where the minimization is now on a densitfo.{K;}) for
a random systeni21-23. In Sec. Il A, we explain the botho and{K;} with the constraint
method in the general case. In Sec. Ill B, we apply the CVM
to the pure systeml(ij =K) as a Iir_niti_ng case with trivial 2 p(a {KiH=PU{K;}). (3.7
disorder. As mentioned above, this is also instrumental to o
give an explicit form forp_, which is necessary to tackle the

fully disordered case. We also discuss several symmetryh€ quantitySp;s is a constant term depending only on the
breakings of the model. probability distribution for the disorder and reads

A. The CVM and its hexagon approximation Spis= — E P{KiHInP{K;;}). (3.9
The CVM is a closed-form approximation based on the {Kij)

minimization of an approximated free-energy density func-, 5;,ch a scheme it can be shown that the quenched average
tional, which is obtained by a truncation of the cluster eX-of the expectation valug/A(o,{K;})) of an operator
pansion of the full free-energy density functional appearings 1k 1)'is given by e

’ 1j

in the exact variational formulation of the probldi25,26.
Consider our spin syster, with N, sites and Hamiltonian -
(2.6) [23]. The configuration of the random bond couplings (A(o {Kiih)= 2 PUKiD(A(e K D)
Kj; is specified by a probability distributioR({K;;}). In our {Kij}

case of “physical” disorder where&;;=Kr7;, we shall

have = &, Pl {KiDA@ (K, 3.9
ijho
P{K,=K77i})= yeesTN) 3.1 ) , -
{Ky =K =ps(7a,-my) 33 where pyin(0,{Kj;}) is the density at the minimum of the
The discussion below is, however, more general. quenched free-energy function@.6). o
In terms of a density matriy(oy,05,. -aUNtHKij}) for The CVM is obtained by taking the thermodynamic limit

. . ) - N;—o and truncating the cumulant expansion for the en-
each configuratiodK; }, we define the variational free en- ! - L
ergy associated with the Hamiltonidt angon{ o {K;;}) (from tropy &= _Em{Kij}P("’{KiJ}.)I”P(‘T'{Kij}) appearing in Eq.
now on, we use the notation={c;}) as (3.6 to a set of “maximal preserved clustersT;,
i=1,2,...r (and all their translated imageshe variational
principle will then be applied to the reduced density matrix
g p(a[{Kij D[ Hrandonf o, {Kij}) pri(a',{Kij}) associated with the maximal preserved clusters

I';, i.e., the minimization will be performed on this reduced
. 3.2 set of densities. o _ _
min In the hexagon approximation for the trl_angular lattice,
the largest clusters appearing in the expansion are hexagons.
The subscript min means that the above expression must béereafter we restrict our presentation to the case of the

F({Kiih =

+In p(al{K;jH1]
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Here we have introduced two site density matriggs, and
A p1gs corresponding to the two interpenetrating sublattices in

AA 3 > which the triangular lattice can be dividésee Fig. 3.
vv e After the appropriate truncation of the cumulant expan-
sion of S at the level of hexagonal clusters, we get the ap-

proximate CVM quenched free energy per hexagon as a
functional of pg({c;},{7;}) only [by implicit use of Eq.
FIG. 3. Labeling of the spins on an elementary hexagon. Eacl{3,12)][25],
sitei (=1,...,6 supports a spin variable; and a disorder variable

7. The reduction process fropg to p, and topiag) is also indi-  f(pe({oi}t{7i}))=—3K Tr, [m1720102p2(01,02,71,72)]
cated.

—h Trylo1pia(oy, )]
Mattis-like couplingK;;=Kr;7;. For the other cases, the —h Tr[o2p18(02, 7)1+ Tr, (psinps)
generalization is straightforward. We introduce the reduced '
density matrix for a hexagon: —3Tr, (palnpy) +Tr, (p1alNpia)

+Tr In +Tr AN -

p6(0-l’0-2'0-3!0-4!0-5!0-6!Tl!7-217-317-4!7-5176)' O',T(plB plB) T{ T({Tl})
(3.10 X[Trope({oit{m) —pre{mD 1} +S,,

The spins in the argument @f follow each other counter- (3.13

clockwise in the hexagon, and the first one is onAhsub- 15 pe minimized with respect tpg({c;},{}). [The cumu-

lattice (see Fig. 3, i.e., is pointing up. This reduced density |30t expansion of the entropy can be understood as follows.
matrix represents the probability for one hexagon to haveye rite the truncated entropy as

fixed values ofo- and 7. It is normalized according to

S= 2 Sum X Set > Sy,
2 p6({0_},{7_}):p76({7_}), (3.1]) hexagonsH pairs P triangles T
to} where we must first subtract the contribution of pairs of
neighboring triangles and readd that of single triangles to

wherep_q is the six-point probability for the disorder vari- gyoid overcounting. Noting that the numbedg . No, Na.,

able on a hexagon as obtained from the corresponding partiandN of, respectively, hexagons, pairs and triangles of the
H H H H - TB [l [} ]
trace opr(Tl,...,er) in the thermodynamic limit. We as sublatices A and B satisfy No/Ny=3, Nya/N,

sume that this six-point reduced density is the same for each N;g/Ny =1, this leads to the entropy per hexagon appear-

hexagon, i.e., that the distribution of disorder is translation-Ing in Eq. (3.13.] Here Tr stands for trace and({r}) are
R . A . i
ally invariant. _ , , . Langrange multipliers that ensure the normalization of
We also introduce the site and pair density matrlcespe({ai},{ﬂ})’ according to Eq(3.11. S. is the entropy for

P1ae)(91,71), pol0,02,m,7), Which are defined as symme- yhe gisorder variabler , for which we also use the CVM
trized partial traces ofg by

estimate:
p2( 01,02,7T1, TZ) ST: Tr’T(pT,Glin‘G) -3 Trr(pr,Zlnpr,Z) +2 TrT(p'r,llan",?:.)iA.)
=5 X wherep,, and p_; are partial(symmetrized traces ofp_g.
78:74:95:96 With the above definitions, our free energy can be regarded
Saree as a function opg only and taking the derivative with respect
X[pe(01,092,03,04,05,06,T1,T2,73,T4:7T5,7T6) to a generic element gf; we find the stationarity conditions
pe({oi}.{7i})
+p6(03,02,01,04,05,06,73,72,71,74,75,Tp)
K h
+p6(03,04,01,02,05,06,73,T4,T1,T2,75,T¢) :eXF{ M+ 2 i;,s TiTi+10i0j41t 3 i:21,6 T
TP6(03:04,05,02,01, 06,75, T4, T, 2,71, T6) X[p2(01,06,71,76)p2(01,02,71,72)
TP6(03:04,05,06,01,02, 73,74, 75, 76, 71, 72) Xpa(03,02,73,72)p2(03,04,73,74)
+p6(01,03,04,05,06,02,71,73,74,75,76,T2)], X po(05,04,75,74) po( 05,06, 75, 76) |2
( =S o ) X[p1a(o1)p18(02)p1a(03)p1p(T4)
pP1Al01,T1)= p2001,02,7T1,72), _
72:72 X pia(os)pia(ae)] M3, (3.19

with the conventioro;=0, /="m,.
p1(02,7)= 2 pa(01,05,71,72). (3.12 One can solve this set of equations with the definitions of
01,71 Egs. 3.12 and the normalization constrai®tll) by the so-
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called natural iteration methd@1]. Starting from some as- TABLE I. Independent hexagon spin configurations. The corre-
sumption onp, and iterating the above equatiop; con-  sponding elements gfs and the degeneracies are indicated.
verges to a solution of Eq3.15 which is moreover a local

minimumof the approximate free enerd®.13. To find a (i) (ii) (iii)
global minimum, it is in general necessary to start the iteraSPin Conf.  Dis. Ferromagnetic Antiferromagnetic  Deg.
tion with different sets of initial conditions op, appropri-  , , , , . | Z Z Z 1
ately chosen to reach the different expected phases. Ateach. 7 A 7 1
step, the normalization conditiof3.11) is recovered by ad- b ZO ZO ZO :
justing the Lagrange multiplier for each realization of the 1 1 o1
disorder on the hexagon. Before going to the analysis of the ~ 21 21 ! 3
model with disorder, in Sec. Il B we will revisit the pure T—~F+= 22 Zs Z2 6
case[16]. One reason is that we need to fix the probability ="+~ —+ Z, Z, Z; 6
distribution for the disorder variablgs({7}). t—t—+—  Z3 Z3 Z3 1
—t—t+—+  Z Z4 Z; 1

B. Pure case and explicit form forp,

In this section, we reconsider the pure caselfer0 in _
detail within the CVM approximation as a particular trivial Zy=exp(— A+ K) (Y4 ) (Y- )Y+ )y (y-),
realization of disorder where &l;; are constant and equal to B 12 12 2
K [16]. We only need to consider the “pure” six-point func- Zo=exp— A= K)(y+ )"y ) Y+ )T (Y ) (y-),
tions pg(o;), which do not depend on the variable any _ 3
longer. We can easily recognize that the PL=22 elements Zzg=exp(—A=3K)(y, )7 (y)(y-), (316
of pg, which correspond to the weights for each state in Fig.

. . inyolving a single Lagrange multipliex. Here,y_. ., y,_,
1, are not all independent since some of the states are relateci’/_ 'y, andy_ are two- and one-point functions(oo)

by simple symmetries and should thus have the same weig andp,(o4) (there is no difference here between sublattides

This of course assumes that the corresponding symmetries : ' i
. andB), which are defined as follows:
are not spontaneously broken. Hereafter we only consider the

system forh=0 and consider three types of solutions corre- Vi =pol++)=Zo+2Z,+27,,
sponding to the three different symmetries of the spin system
in the phase diagram of Fig.[26]. Vo = po+—)=po—+)=Z1+4Zo+Zs,

(i) Disordered folded phase: we do not allow for any
spontaneous symmetry breaking in the system. Using rota-
tional symmetry and the symmetry under reversal of all
spins, we end up with only four independent weighs » 3
corresponding to vertices with, respectively, zero, two, four,
or six surrounding folds.

(i) Ferromagnetic phase: we allow for a spontaneous
ferromagnetic symmetry breakiriyl #0). Then the two ver-
tices with no fold have different weight, andZ, according
to their =6 magnetization. The other vertices are neutral in (Zoz_o)l/z Z, 7, (v, )Yy )12
this respect and we end up with five different weights. ———=—=—=exp2K) —M@M.

(iii) Antiferromagnetic phase: we allow for a spontane- 2 22 Zs Y-
ous antiferromagnetic symmetry breakifd y#0). Then all (3.18
WEIghtS Zi have to be doubled intOZ( !Zi) except for the |ntr0ducing the two reduced Variab'es
vertex with no fold(i =0) which is neutral in the staggered

Yo =po(——)=Zo+2Z,+2Z,,
y+=pl(+)=ZO+3zl+622+Z3,
Y_=pi(—)=Zo+3Z,+6Z,+Z5. (3.17

The above equations imply the following simple relations:

magnetization. We end up with seven different weights. Z, 270
The spin configurations, their degeneracies, and the nota- X=——=——0, Y=, (3.19
tions for their weights are summarized in Table I. Of course, (ZoZo) Zy

case(i) can be recovered from either ca8e or (iii) as a i )
particular realization with no spontaneous symmetry breake can express all the weights in terms>qfy, and the
normalization factomw,=(Z,Zo)%

ing (i.e., Z;=2; for all i). Also, we assume that the two

(ferromagnetic and antiferromagnegteymmetries cannot be Y =  _y

broken simultaneously. We thus need to study only céses Zo=y "o,  Zo=y YAy,

and (iii) above to get the complete phase diagram of the ) 3

system(here ath=0). Z1=XWp, Z=XWg, Z3z=XWp. (3.20
At first we consider the ferromagnetic cagg. In this ) )

case, the stationarity condition reduces to the following non- 1 he above equation.16 reduce to the following non-

linear equations between the weigm§,z_0,zl,zz,z3: linear equations for the reduced variables:
y+ 2y1’2(x+x2))3( 1+yY2(3x+6x2+x%)\?

Zo=exp(— A +3K)(y44)%(y+)?, -
o o " 1+2yY(x+x%)) |y+yYA3x+6x%+x%) ]’
Zo=exp(—\+3K)(y__)%(y-)?, (3.21
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y(x+4x2+x3)
X UL 2y ) 1y + 2y A x ) |72 <> %

(3.22
whereu=exp(2K). The parametey measures the spontane- P P P
ous ferromagnetic symmetry breaking while the parameter ° 1 : ’
measures the fugacity per folded bond. 2 6 12 2
We can easily see that E¢3.21) has two obvious solu-
tions: a solutiony=1 andx arbitrary and a solutiox=0 FIG. 4. Probability distribution for each disorder configuration.

andy arbitrary. The latter solution is also a solution of Eq. We also show their degeneracies

(3.22. It means that each vertex of the membrane can be o ) )
only in one of the two configurations without fold, or above, the limiting case=0 descrlbe_s a membrane_ with no
Zo. The solution cannot determine the ratie-Z/Z,, i.e., ~ crease andk; =K everywhere, whilea=c describes a
the proportion of each state. However, with only these twghembrane with creases everywhere ag=—K on each

vertices at hand, no fold can ever be created and the onl ond. . .
possible global states for the lattice are the state with ali NOW We discuss the compactly ordergantiferromag-

spins up(M =1) and that with all spins dowfM =—1). The net_ic) folded phase(iii). There are seven ?n(_jependent
above solution simply describes an arbitrary superposition of€ights forh=0 (see Table ) and in this case it is conve-
these two(symmetrig pure flat states. The fact that the mem- Ment_fo use staggered variableg;=(—1) “o; with
brane is indeed frozen in a pure completely flat state is furi_l)i_l:1 on triangles belonging to the sublattiée and
ther confirmed by computing the entropy that is found to bel —)' ~=—1 on triangles belonging to the sublattiBe The
exactly zero, and by computing the free energy, that is foun§°responding two-point function is simply
Loork]:)desfp:er—sg(a%%rnhexagon, as expectdthere are three P2 7112 = p2(m1— 7). (3.26
The first solu_tion withy=1 means that the spontaneous About the one-point function, we have the symmetry
symmetry breaking does not occur and that the membrane I$1a(0)=p1p(— o) in the antiferromagnetic phase, leading
in the disordered folded stat&Z{=Z,). The value ofx is  to only one(A or B independentone-point function fory:
then fixed by Eq(3.22 [16]:
P (1) =p1a(7)=p1(— 7). (3.27
_(2-u)+V(B—u-u?)
B (2u—1) ’

(3.23 As before, the solution of the nonlinear stationarity equa-
tions for the seven weights can be parametrized as

which has a solution foK=<In[(1+/13)/2]/2. Comparing _ oy >y

the corresponding free energy to that of the pure flat state, we Zo=Wo, Z1=xy"Wo, Zy=xy "Wy,

get a first-order transition from disordered folded to purely e _

flat at K ~0.1013[16]. Zy=x?y o, Zp=x?y"MAwg,  Zy=x*y¥Awo,
We also looked numerically for another nontrivial solu-

tion with spontaneous symmetry breakifyg#1) and inter-

mediate magnetizatiotk#0) but did not find any. We con-

clude that there is no possible flat phase with|Bl|<1 and

Za=x3y 3y, (3.28

with two reduced variables andy solutions of

the above three phasdd =+1 or 0) are the only stable ones Vo (y 213 ) yl2 yiz

for positiveK. y= — , X=u—, (3.29
As has been discussed previously, the above analysis is Y- ¥+ Y-

also instrumental for the estimation of the probability distri-\ynere

bution p,¢({7}) of the disorder variables. We can use in-

deed forp_g the distributionpg above atk =h=0, charac- Vi =py++)=2Z1+ 322+z_2+ Z3,

terized byy=1 andx=2 [16]. In other words, if we define

Po.1.23as the weightg_ ¢ for the local realizations of disor- Yo =ppa+—)=p, (= +)=Zo+ Zi+Z1+Zo+2,,

der with zero, two, four, or six creases around the vertex, we
learn that the ratio®,/Py, P»/P,, and P3/P, must all be
identical and equal to tw(see Fig. 4 Their values are then
fixed by the normalization:

Yo =pyd——)=Z1+3Z,+Z,+Z,,

Yo =ppa(+)=Z0+2Z,+2Z,+4Z,+2Z,+23,
2Py+6P;+12P,+2P;=1 (3.24 _ _ _
y—:pn,l( _):Zo+ 221+ Zl+ 4Zz+ 222+Zg

leading to[16] (3.30

Po=%, Pi1=3%, P,=% P;=%. (325 In Egs. 3.29, the global normalizatiom, drops out, so the

equations can be solved fax and y as functions of

More generally, we can parametrize the distributiorPof u=exp(2K). Again the variablex measures the fugacity for
with  one parameter o« equal to the ratios each fold and/ measures the antiferromagnetic spontaneous
a=P,/Py=P,/P,=P3/P,. Beside the natural value=2  symmetry breaking. Solving the above equations numerically
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by iteration, we find a continuous transition from a disor-

dered folded statdy=1) to a compactly folded ordered
phasey+#1) at K,=—0.2838. The value ok, can be found
simply by linearizing Egs. 3.29 by writing=1+e¢. This
fixes the value ok to be the real solutiom,; of

x3—21x%—12x—4=0, (3.3)
that is

Xg= 7+ (387+2./223 Y3+ 53/(387+ 2223 17

(3.32
andu to be
L 1+ 4xgt X2 (3.33
ST+ 2x gt 25X '

IV. RESULTS FOR THE FULLY DISORDERED SYSTEM

In this section we analyze the fully disordered cf&g.
(2.9)] within the CVM approximation. In Sec. IV A, we
study the system fdn=0 for several values of the parameter
«a for the disorder weights. Next we fix=2 and proceed to
the general K,h) case in Sec. IV B. We obtain thé&(h)-
phase diagram by use of the natural iteration method.

A. Analysis with reduced elements ofpg (h=0 case

As in Sec. lll, we will study the fully disordered system
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[The reader might wonder whether the-—7 symmetry
could lead to a zero quenched average of the order param-
eter. However, this symmetry implies only that whenever
pmind{ot{7}) is a solution of the variational equations,
pmin{ot{—7}) is also a solution, but does not imply that
Pmin{atd)=pmin{ct{—7}).] This order parameter judges
whether or not the membrane is trapped in the randomly
oriented phase, characterized by the disorder varigblgs
As in the antiferromagnetic case, it is natural to use the fol-
lowing “‘gauged” variables:
Ni=0iT;. (4.4

Using these new gauged variables, we classify the ele-
ments of six-point functions by the symmetries of both the
spin configuration and the disorder configuration. Hereafter
we only consider the system fbre=0 and allow for two types
of solutions that correspond to whether the frozen order ex-
ists (F#0) or not (F=0).

(i) Disordered folded phase: we do not allow for any
spontaneous symmetry breaking in the systéfn M, and
F=0). Each of the four elementary types of disorder con-
figuration(with zero, two, four or six creasgkeaves us with
a certain number of symmetries, including that under rever-
sal of all spins. We use these symmetries on#hariables
to reduce the number of weights. We end up with only 22
independent weights in this case.

(i) Frozen phase: we allow for a spontaneous symmetry
breaking of the frozen order parametdf+#0). Then all

for h=0 by reducmg the number of elements of the six- pothEIthS have to be doubled except for those vertices that are
density matrix. In the case with disorder, the symmetries oneutral in the gauged magnetizati@B?7=0). We end up

the elements of the six-point functig({o;},{7;}) depend
also on the symmetry of the disorder variables, in addi-
tion to the symmetries of the spin variadle} itself.

with 38 different weights in this case.
In Fig. 5, we have summarized the results of this symme-
try analysis in casé€i). Note that casé) can always be seen

In Sec. Ill B, we have studied the pure model with anas a particular case of cagp with extra symmetries. On the

antiferromagnetic spontaneous symmetry breakindfet0.
There we have used the staggered variables
7=(—1)"1o;. If we regard the pure system f&r<0 as a
trivial disordered system witp (1,-1,1,-1,1-1)=1, i.e,,

7 is fixed to(—1)'"%, andK>0, the above staggered vari-
ables can be ertten as

4.9

Ni=0iT-

The motivation for introducing the staggered variables is that

in these variables the antiferromagnetic order paraniétgr

is simply written as
1
wl[3])

and we do not have to differentiate between theand B
sublattices. That is, the staggered variables are more
natural than the original variablds;} when one discusses
the antiferromagnetic symmetric case.

4.2

left-hand side of each group, we show the disorder configu-

akation {7}. To its right, we present the spin configurations

{7} that are independent from each other. We also indicate
the notations for their weights and their degeneracies. The
two indicesi,j in ZII indicate a configuration with i2
creases andj2folds in theo variable.

In terms of these elements of the six-point function, we
define the two-point functions as follows:

ygyo: Zéo"_ 220'1"' 220'2"' 221'0“1‘ szl“l‘ szl“l‘ 22]?2

+275 7+ 27, o+ 225 1+ 2751+ 275 5+ 275,
Yoi=Zoat+4Zo ot Zogt Zi 1+ Z1 1t Zi o+ 21 5+ 3Z5,
+ 821t Zi gt Zi gt Zyat 2yt Za o+ 25 5+ 225,
+2Z5 5+ 23 5+ 25 5t 239t Z5 3,

Y1.0=Yo1(Zij—Zj,i),

In the fully disordered system, we are mainly interested in

the spontaneous symmetry breakind<atO of the following
“frozen” order parameter

4.3

Y11= 210t Zi gt 23 o+ 225 5+ Zi g+ 250+ 2511425,
+275 y+AZ5 y+ 225 7+ 875+ 325 4+ 25 5+ 225,

+Z55+3Z5,+ 25,25, 4.5
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The superscript off means that the gauged spin configura-
tion {#} have the corresponding positiver negative con-
tribution toF (see Fig. 6. Again, the first subscript indicates
whether there is a crease linf&) or not (0). The second
subscript means that there is a fdit) or not (0) in the
original o variables. Based on these two-point functions, we
also introduce the following one-point functions:

Y =Yoot Yot YiotYis. (4.6)

In terms of these functions, we write down the stationarity
conditions. For example, let us show thoseZgl, Zg 1, Zo 2,
andZ 3

Zgo=exp(— N+ 3K) (Yo% (y")?,
Zgo=exp(— N+ 3K) (Yo% (Y )?,
Zo1=exp— o+ K)(Yg,0 (Yoo (Yo (Y ) (Y ),
Zo=exp—No—K)(Y5,0 "0, " Yo (y )Y 7),

Zoz=exp(—Xo—3K) (Yo /(Y )(y7). 4.7

Here, due to the above symmetries, we need only four

FIG. 5. The 38 independent local fold environments for eachLagrange multipliers.q ; , 5 one for each of the four elemen-

vertex for the four different local realizations of disordeero, two,

tary types of disorder in Fig. 4. These Lagrange multipliers

four, or six creasgs Each disorder configuration is shown at the are of course determined by the normalization conditions,
left-hand side of each group. To their right, we show the spin con{jke

figurations, the weights, and the degeneracies. We have represented

by thick lines the domain walls for the gauged spin variable
n;=o;7; . A subscripti,j indicates a configuration withiXreases
and 2 folds. The superscript indicates a+ contribution toF. In

a F=0 phase, equating the and — weights leaves us with 22
independent weights.

ARA
AR

T
T config.

Zg ot Zogt 6201+ 1220 5+ 2Z 5= Py. (4.9

As in the pure case, we introduce reduced variables. Here we
need four ratiox, y, s, andt defined as

1 Yo,1 1 Y10

x=utl——""— y=u
(yar,oyo,o)ll2

)1/2'

(Y1 Y11

+ 1\ 1/2 1/3 + 1\ 1/2 1/3
T T o
Yo, Y+ Yi1 Y+

and for convenience, we also introduce the following aver-
aged weights:

WOI (Z(;OZ(;,O)UZ'

7t 7 \12
Wy=(Z14Z10)7%

1 config.

Wo=(Z3 25" wi=(Z3Z359Y%  (4.10

FIG. 6. Definitions of two-point functions. Gauged spin vari-
ablesy;= o7, are used. On the left-hand side, we show the disor-The stationarity conditions are then reduced to the following
der configurationr. simple form:



246 P. Di FRANCESCO, E. GUITTER, AND S. MORI 55

Zé—’oz St 3Wo y ZO,l: XWO y 20’2: X2W0 y 20’3: X3W0 y 1.0 T
08 A
7. —=y3 7= =y2tEl 7 =yl 8 "
30— Y W3, Z3:=Y17 W3, Z3z,=yl "ws, s 06 oo
g L R
Zi _t13 7= Zi — Ztil s 04 :}:
33~ 17 "W3, 1,0= YW1, 11= ST Wy, S o2} N
_ 5 o0 o]
7E -1 7F —xgtl = 0
11T XYS "Wy, £ ,=XSTTWy, S 02} T
~ = -04 1 il
Zy =Xy sty YAy, 27 =Xt w g i
1.2 ( 1 413 1) S 06 T
4D |
2 + +1 ey K
Zo0=Y Wz, Z3,=yS "Wy, 10 l - -
0.00 0.05 0.10 015K 0.20
ZZi,l: x1’2y3’2(st)i1/2wz, Zizz s* 1t12W2, K
Z_zi,zzxyti w,, HZJzi’fxytt w,, FIG. 7. Frozen order parametErversus bending rigiditK. F

changes fromF=0 to F#0. The system shows a hysteresis with
2: =XV V2(st)E 12y 7E =t w,. 4.1 two separate jumps for two values I§f on each side oKg. The
2.2 2y (sY 2 23 2 (4.19 position ofK is determined precisely by comparing the free ener-

Each WeightZi’J- is given as the product of; by a simple gies of both phases, as shown in the next figure.

function ofx, y, s, andt. The rules for thex andy variables ) ) o

are simple:  The disorder configuration splits the bonds intdion, the method will show a hysteresis. Note that this itera-
those that support a crease and those that do not. On thi&Nn procedure is slightly different from the natural iteration
bonds with no crease, we assign a fac{arif the bond has Method that we shall use in Sec. IV B, where we search a
a fold and 1 otherwise. On the bonds with a crease, we assig?P'Ut'O” for the nonlinear stationarity equations from differ-
a factor\Jy if the bond has no fold and 1 otherwise. In both ent initial assumptions corresponding to the different pos-
cases, the nontrivial factor is assigned if the gauged variablgP/e Symmetries.

changes sign when crossing the bond. About the factoss of In Fig. 7, we ShO.W the behavior_ of t_hg frozen order pa-
andt, the rules are more subtle. Stflandt both measure rameterF as a function of the bending rigiditg. For small

the symmetry breaking of the frozen parameter. 1t<I£1<}ci<F)ﬁF is (':Al\early rZ1€f0 and thehsystemfi§ in ac;jisordergd
The weightsig  , scan be expressed as functionscpfy, ~ folded phase. AKg, the system shows a first-order transi-

s, andt thanks to the normalization conditions as follows: ton from this disordered folded phase to a frozen phase
F#0. The value ofF| is strictly less than 1, thus the system

Po=Wg[s3+ s~ 3+ 6x+ 122+ 2x%], is only partially frozen. When the iteration is performed with
first increasindk and then decreasing it back to zero, we see
P,=W,[2y+s%t+5 2t+2xyz+2xyz t+2xy+2xy * a clear hysteresis with two jumps on both sidegf. The
value of the transition poinK: can be fixed precisely by
+Ax3Ay eV A2y 4y 3oyt~ =12 52+ 32t 1, comparing the value of the free energies for both phases.
This is shown in Fig. 8. The hysteresis allows us to see
Po=w,[2y?+ys+ys 1+ 2xV3 st/ clearly the crossing of the two free-energy lines correspond-

+ 2x Y2y 8eg U 12 g2 + 571t~ 2 4 Bxyt+3xyt !

4 2Xl/2yl/281/2tl/2+ 2Xl/2yl/257 l/2t7 l/2+ Xt+ Xt~ l],

-0.35
Py=w3[t3+t 3+ 6y(t+t™ 1)+ 3y2(t+t~ 1)+ 2y3].
(4.12

In Eq. (4.9), the right-hand side of each equation is thus a

function ofx, y, s, andt only. These equations can be simply

solved numerically by iteration. ‘
Hereafter we show the results of this numerical analysis. Rl Y

We first fix a=2 for the weightsP, ; , 3 We start the itera- sy Lo

tion for K=0 with a fully symmetric solution that corre-

sponds to a disordered phase. We proceed to the iteration 068 o 6.05 0.10 015 Ko 020

until the required precision is reached. We then incrdase K

by dK and restart the iteration. For this next valuekgfwe

start the iteration from the solution of the iteration for the  FiG. 8. Free energy per hexagon versus bending rigidi.

previous value oK. This procedure allows us to follow the The thin straight line corresponds to a completely frozen phase

continuous evolution witk of a given local minimum ofthe  F=1. This phase is never stable. The two thick lines correspond to

free energy. We increade from 0 to 0.2 and then decrease disordered folded phage=0 (for smallK) and to the frozen phase

it back to 0. In this way, if the system has a first-order tran-0<|F|<1 (for largerK). The two lines cross at the transition point

sition with two local minima of the free energy in competi- K. As shown in the inset, we find~0.1661).

-0.45
-0.490

-0.500 ¢

Free Energy

-0.510 -
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FIG. 9. Gauged  two-point  function (7y7,)=
—(internal energy)K versusK. We see here also a clear evidence  F|G. 10. Frozen order parameterversusk for several values
of first-order transition with a hysteresis. of a (we only show here the cage=0). The jump in the order

parameter becomes smaller asbecomes larger. The continuous
ing to both phase§ =0 andF #0. Indeed the system stays character of the transition is recoveredaato (pure antiferromag-
for some time after the transition point in the wrong meta-netic system For intermediatey, the iteration gives rise to a hys-
stable state. As shown in the inset of the figure, the transitioteresis.
occurs atK~0.1661).

Figure 9 shows the behavior of the two-point functionis in a frozen phase witM =0, M=0, andF ~1. There is a
{(m17m,)=—(internal energy)X versus K. It also shows first-order transition line between these two phases, which is
clear evidence of first-order transition with a hysteresis in theoughly given byh=2K. The position of the line can be
results of the iteration procedure. Kt=0, the disorder vari- obtained by requiring that the free energy of the completely
ables7; and spin variablesy; decouple. The value of the flat phase and that of the frozen phase take the same value,

function is then(z,7,) = 7172(0102)at k0= (— ) X (— } i.e., by solving the eqyatipnc_ﬂatszrozen. Abogt fc_ﬂa.t, the
=13, as found heréthe value—3 is easily obtained from the bending energy contribution per hexagon is estimated as
analysis of the pure case lit=0 of Sec. Il B[16]). —3K(7 7,010,y =—3K(7,7,) = —3KX(—3) =K, while

Next, we studied the system for several values of the pathe entropy vanishes in the absence of local excitations. We
rametera for the disorder weights. As has been explainedthus get the exact free enerdy;,=—2h+K. The estima-
previously,a=0 means that there is no crease in the systention of f,., is more difficult and we simply assume that
and a=o corresponds to the pure antiferromagnetic systemf;,,..=—3K as in a completely frozen phase, because the
From the previous analysis, we know that the system showBozen order parametét is almost saturated to 1. From these
a first-order transition for both=0 anda=2 above. Ate=0  estimations, we obtain the transition lite=2K, which is
(where F=M) the transition is fromF=M=0 to F=M what we indeed observe.
==+1[15]. At =2, the discontinuity is smaller witfF|<1 For smallerK andh, the system is in a disordered folded
in the frozen phase. We also know that the transition bephase withF=0 andM ~0. As for the pure systenM does
comes continuous and second orderat~ [16]. The tran-  not vanish exactly foh>0 but still remains very small. This
sition point is atk =0.284 as obtained before. From the re-
sults in Fig. 10, we see that the discontinuity of the transition

becomes smaller as we increase the paramet&he conti- 050
nuity of the transition seems to be recovered onlyrato,
although it is difficult to determine whether the transition is 0.40 - (2) Completely Flat Phase ]
of first order or of second order when the discontinuity be- @)
comes too small. 030 | M=1 F=0 Frozen |
Phase
L
B. (K,h) phase diagram 020l () : 11;/:[&_00 |

Let us now turn to the analysis of the whole phase dia- : Flat Phase M~0
gram in the K,h) plane. It is, of course, symmetric with oo | OM<d F=0 |
respect to thér=0 axis. It is shown in Fig. 11 foh=0 as ' =0 Disordered
obtained from the CVM stationarity equations solved by the ~ f------- ! (1) Folded Phase
natural iteration methof21]. Here we have set=2 again 0.00."5 05 00 0.5
and the results were obtained with a set o&k22 indepen- K

dent weights, i.e., without making any assumption on the

symmetries of the different phases, except in the initial con- F|G. 11. Phase diagram in th& (h) plane for the fully disor-
ditions of the iteration. At sufficiently large values ofand  dered systeniEq. (2.9)]. First-order lines separate the four phases:
for h>2K, the completely flat phase witM =1 is stable (1) Disordered folded phase withl ~0, F=0, (2) completely flat
with respect to both the disorder and the thermal fluctuationghase withM =1 andF =0, (3) flat phase with &|M|<1 andF =0

At sufficiently large values oK and forh<<2K, the system and(4) frozen phase wittM =0 and|F|>0.
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FIG. 13. Gauged two-point functio 7,7,)=(01710,75)
along theK axis (K<0, h=0).

K regime, which confirms the absence of transition in this

disorder configuration. Folds are indicated by thick lines andregime(ath=0).

creases by dashed lines. On the left-hand side, we show the disorder Finally, we included in Fig. 11 the results of the CVM
configurations, in the center the corresponding lowest-energy stat@nalysis for negativi and arbitraryh. We can see the emer-
which violates the local folding constraint for the disorders with onegence of a new partially flat phase witkfM|<1. The na-

and two creases, and on the right-hand side the lowest-energy stat#e of the transition between this phase and the disordered

that preserve the constraint, together with their degeneracy.

might be an artifact of the CVM approximatidri6]. At

K =0, the spin variablesr are decoupled from the disorder
variablesr and the fully disordered system is the same as th

pure system. It has a first-order transition poinhat0.184

[15]. For h=0, the above results confirm those of previous

sections with a transition & =K.
We have also studied the case of negatfyealthough it

is not very physical. Still, it presents interesting features in

(<]

folded phase is unclear, in particular because in the latter
phaseM is not exactly zero within the CVM approximation.
We then see a limiting poir(black circle in Fig. 11 below
which the magnetization does not present any longer a dis-
continuity between the two phases. This also might be an
artifact of the CVM, in which case the true transition line
should be continued to lower values f(dashed ling

V. OTHER MODELS

In this section, we complete our study by considering

view of our further study of other types of disorder in Sec. V. other variants of the disorder. As discussed in Sec. Il, there

In the usual Mattis model without constraint and for0,
the spins develop at large enough negatvan “antiferro-
magneticlike” order in the gauged variabtg with a ground
staten,=(—1)""! in the limit K=—s. Here such order can-
not be reached in general due to the constrainphence

are several possibilities for the choice kfj . In order to
appreciate the importance of the local folding constrédrit)

on the disorder face variables, we will study the model
Hamiltonian(2.9) without the local folding constraint og .
Next we will study the Edwards-Anderson model with the

on 7. If the disorder has zero or three creases, then théocal folding constraint on the spin variablesand a bend-

ground statey,=(—1)'"! can be reached and is the unique
ground-state spin configuration. On the other hand, if it hadli
one or two creases, it cannot be reached and we are led
several lowest-energy spin configurations, as shown in Fi
12. AtK=—o andh=0, the actual ground state will thus be
degenerate with frustrations in the system that might prevery
the emergence of a true “frozen antiferromagnetic” order.
The system is thus always disordered in contrast with th

pure case where an antiferromagnetic order had develope

ing term Kj; given by K;;=Kr;; with a random variable
==*1 on each bondi{). We refer to the former case as

gEBOdeI(Z) and to the latter case as mod8]. The difference

etween model&) and(3) is simply the possibility in model
(3) of having vertices with an odd number of surrounding
reases. We also refer to the original mod2l) with the
Iding constraint ons; as model(1).

Before we discuss the corresponding,) phase dia-
rams, let us discuss the two-point function of the system at
=0 and largeK. Clearly in this limit, for a fixed disorder

From the analysis of the lower-energy states, we can eagynfiguration, thes; variables will tend to minimize the en-

ily compute the two-point correlation akK——o, c
=(o 10,7 for the gauged variabldi.e., the internal

ergy —Kj;ojo;, i.e., will tend to maximize the overlap with

the disorder configuration in terms of folded bonds. In other

energyK). For a disorder with zero or three creases, we havgyords, the system wants to create a fido; =—1) when-

30 aroundo{TiTiTi+17i+1)= —6 in the lowest-energy state.

ever a crease existk;;/K=—1), and no fold otherwise. For

For a disorder with one or two creases, we havean arbitrary environment df;; around a vertex, we can eas-

2 aroundo{TiTiOi+1Ti+1)=—2 for all the lowest-energy
states. The averaged value is thus estimated cas
=(0110579)=[ —6(Po+P3)—2(P;+ P,)]/6=—19/3%
—0.48. This is what we obsersee Fig. 1R The two-point

ily find one corresponding lowest-energy state for dheari-
ables around the vertex. There are, in general, several such
states. In Fig. 14, we have displayed all disorder environ-
ments together with one of the corresponding lowest-energy

function does not show any discontinuity in all the negativestate. It is interesting to notice that the disorder configura-
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FIG. 15. Gauged two-point functiofvy7,0,7,) for model (2)

FIG. 14. One of the lowest-energy spin configurati¢ag for  (solid line) and( o 71,0,) for model(3) (dashed lingversusk for
each type of disorder configuration. Folds are shown by thick lineg,=0.

and creases by dashed lines. The degeneracies for the disorder con-

figuraltiqns are indicated. We also give the value of the correspondy petter overlap with a constrained configuration can be

ing minimal energy. obtained for those frustrated disorder environments with an
odd number of creases.

tions can be arranged in three categories. We have studied the phase diagrams of both mo¢ls

ﬁnd(S) within the CVM approximation by use of the natural

the folding constraint. The lowest-energy state is unique an era_tt_|on methoc[21]._ In order to characterize each pha_se, n
has energy-6K. addition to the previous order parametéfsand F we will

(i) Those with an even number of creases but which d@!SC Use the spin-glass order parameteefined in Eq(2.7),
not satisfy the folding constraint. The corresponding minimai9eneralized to the case whelver0:
energy is—2K in this case. 1

(i) Those with an odd number of creases. The corre- q=— > [{o)2—({(o7))2]. (5.3
sponding minimal energy is-4K in this case. Nt 5

(i) Those with an even number of creases and that satis

Of course, in mode(2), only vertices of typdi) and(ii) are  In model(2), both F andq measure the frozen character of
allowed while in model3), all vertices can appear. the phase. They are expected to be zZgmnzerg simulta-

At K—o and h=0, we can thus estimate the two-point neously for our choice of disorder distribution. In mod8l
function (7n,7,)=(o1m0,7,) for model (2) and with no facer; variablesF is not defined any longer and we
(o171,0,) for model (3) by averaging over all disorder en- Will use g as a measure of the frozen character of the phase.
vironments the corresponding minimal energy. @llowed ~ The phase diagram for the mod@) is shown in Fig. 16 and
disorder environments are now equiprobable. Taking into acthat for the model3) in Fig. 17. They are, of course, sym-
count the appropriate degeneracies under rotations, we get
for model (3),

1.5 T
<O'1T120'2>:(_6><1_6X1_4X6_2X6_2X6_6X3 Comple[ely Fl;‘rolz)in
at ase
CAXB-4X2—4X12-2X3—2X6—6X6 1o  FlatPhase o0
_ - M=1 F=0
4% 6)/(6X 64)=59/96~0.614, (5.1) - o o
q:O ———————————————
For model(2) we find easily 05 Disordered Phase |
M~0
(g1710575) = 18/32~0.562. (5.2 F=0 q=0
0.0 L L !
Note that the above calculation assumes that a lowest-energy 0-0 05 1,? 15 20

state can be constructed globally out of these local lowest-

energy configurations. This assumption is acceptable within FIG. 16. Phase diagram in thi(h) plane for model2). We
the CVM apprQX|mat|on at least. We show on Fig. 15 thefing three phase€d) a disordered phase wifi=g=0, (2) a com-
two-paint function for models2) and (3) as obtained from jetely flat phase wittM =1 andF=q=0, and(3) a frozen flat
the CVM. They do not display any discontinuity and tend tophase with &M <1, g>0 and F>0. The solid line represents a

the values calculated above at larfe Note also that in first-order transition line and the dashed line a continuous transition
some sense, mode3) is less frustrated than mod@) since line.
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15 : (2) Kjj=Kr;1; without the folding constraint on thg’s; (3)
Kij=K;; with a bond random variablg;==1. In case(1),
the folding constraint on the disorder variables was intro-
duced to describe a particular type of “physical” disorder
] supposed to mimic that induced in a randomly crumpled sur-
face, here in the context of the folding of the triangular lat-
tice. Applying the cluster variation method generalized to
Frozen | Disordered random systems, we have studied the phase diagrams of the
Flat Phase Folded three modelgl), (2), and(3) and their phase transitions. The
M>0 Phase phase diagrams for each case are depicted in Figs. 11, 16,
q=0 M=¢=0 and 17, respectively. The most important difference between
0.0 ‘ L <—J model (1) and modelg2) and (3) is that, in the absence of

00 % " 15 magnetic field, a frozen phase is found only in modg) for
large enougtK. In this phase, the configuration of the trian-
gular lattice is trapped in the randomly oriented phase char-
acterized by the configuration of the disorder varialjles
Models(2) and(3) do not present such frozen orderat0.
Indeed, these models, where the quenched randomness is not
constrained, have strong frustrations because the constrained
spins describing the normals to folded configuration fail to
be in the “virtual” lowest-energy ground state dictated by
the unconstrained disorder, even if the coupling congtant
becomes large. Fdr>0, a frozen phase is recovered in mod-

exchange equally probable disorder environments and sirﬁa-IS (2) and (3). We find several first-order or continuous

C : : transition lines between the frozen phase and a completely
ly changeK into —K. W ly display the ph d :
?o}r/ iijg%nd;]l% © only dispiay the phase diagrams flat phase or a disordered folded phase.

At K=0, both systems are identical to the pure system At last we make one comment about previous studies on
and underéo a first-order transition kt-0.184 to a com- another spin model describing a polymerized membrane with

pletely flat phase. This completely flat phase wit=1and  duenched random spontaneous curvatyes,2g, with
g=0 is stable for alK at large enough above a line which Hamiltonian

is almost the same for the two models up to the tricritical

point of Fig. 16. Ath=0, both systems remain in a disor- H=—D, Kﬁi.ﬁj_z [Sij.(ﬁixﬁj)_ (6.2
dered folded phase withl =q=0 for any value oK. This is ij ij

different from model(1) where we had a transition to a fro- _
zen phase @ =K. The absence of a frozen phasehat0 Heren denotes the normal vector to the membrane embed-

is again due to the presence of frustration in the system leadl€d in 3D space. The first term is a bending rigidity term and

ing to several competing lowest-energy states. K is the bending rigidity modulus. The second term is a
For fixed (large enoughK and increasind, models(2) ~ andom spontaneous curvature term with a Gaussian prob-

and(3) display different behaviors. As far a@sis concerned, ability distribution forD;; with variance

model (3) develops a nonzero value gffor any h>0. On

10l Completely Flat Phase

M=1

0.5

FIG. 17. Phase diagram in th& (h) plane for model3). Two
phases are separated by a first-order transition (ijea frozen flat
phase with &M <1 andg>0 and(2) a completely flat phase with
M=1 and g=0. The disordered folded phase wiM=q=0 is
recovered only ah=0.

metric with respect to th& =0 axis but also with respect to
the h=0 axis. This is because the transformation
7,—(—1)""'7 in model (2) and r;;——7; in model (3)

the other handg remains zero in moddR) until a critical <|5i2j>:r2_ (6.2
value ofh is reached where a continuous transitiomte0
occurs. For both models, the “frozen” phase wigk-0 also In particular, it does not satisfy “physical” constraints of

has 6<|M|<1, and is thus partially flat. As to ttg=0 phase a spontaneous curvature that would have been induced by
of model (2), we see a nonzero value ™ that is indeed crumpling. Within a mean-field study, it was concluded in
non-negligible close to the continuous transition line. Still[27,2g that the model has a wrinkled phase in eI

we cannot exclude that this could be, again, an artifact of th@lane with nonzero spin-glass order paramet#0. This is

CVM approximation. Indeed, by continuity from th€=0  to be contrasted with our results where the existence of such
line, we would rather expedl =0 everywhere in this phase. a phase was crucially requiring the “physical” constraint on
This issue is thus not fully solved. Finally, the absence of thehe disorder variable. However, it is not yet clear whether our
q=0 phase in mode(3) (except forh=0) might also be conclusions for a quenched random rigidity are applicable to
interpreted again as an indication of a weaker frustration aghe quenched random spontaneous curvature case. To study

compared to mode(l). the folding of the triangular lattice with random spontaneous
curvature, we would need to go to a three-dimensional em-
V1. DISCUSSION AND CONCLUDING REMARKS bedding space. One possibility is to introduce disorder in the

96-vertex model of Refl17]. This is left for future study.
In this paper we have studied the folding of the triangular
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